106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning-based virtual screening and molecular modelling studies for identification of butyrylcholinesterase inhibitors as anti-Alzheimer’s agent

ORCID Icon, , , &
Received 17 Apr 2023, Accepted 28 Feb 2024, Published online: 11 Mar 2024

References

  • Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531–568. https://doi.org/10.1002/med.20067
  • Altamirano, C. V., & Lockridge, O. (1999). Association of tetramers of human butyrylcholinesterase is mediated by conserved aromatic residues of the carboxy terminus. Chemico-Biological Interactions, 119–120, 53–60. https://doi.org/10.1016/s0009-2797(99)00013-7
  • Bar-On, P., Millard, C. B., Harel, M., Dvir, H., Enz, A., Sussman, J. L., & Silman, I. (2002). Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry, 41(11), 3555–3564. https://doi.org/10.1021/bi020016x
  • Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Thiel, K., & Wiswedel, B. (2009). KNIME-the Konstanz information miner: Version 2.0 and beyond. ACM SIGKDD Explorations Newsletter, 11(1), 26–31. https://doi.org/10.1145/1656274.1656280
  • Chatonnet, A., & Lockridge, O. (1989). Comparison of butyrylcholinesterase and acetylcholinesterase. The Biochemical Journal, 260(3), 625–634. https://doi.org/10.1042/bj2600625
  • Chekmarev, D., Kholodovych, V., Kortagere, S., Welsh, W. J., & Ekins, S. (2009). Predicting inhibitors of acetylcholinesterase by regression and classification machine learning approaches with combinations of molecular descriptors. Pharmaceutical Research, 26(9), 2216–2224. https://doi.org/10.1007/s11095-009-9937-8
  • Chiu, C., Miller, M. C., Monahan, R., Osgood, D. P., Stopa, E. G., & Silverberg, G. D. (2015). P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: Preliminary observations. Neurobiology of Aging, 36(9), 2475–2482. https://doi.org/10.1016/j.neurobiolaging.2015.05.020
  • Ciro, A., Park, J., Burkhard, G., Yan, N., & Geula, C. (2012). Biochemical differentiation of cholinesterases from normal and Alzheimer’s disease cortex. Current Alzheimer Research, 9(1), 138–143. https://doi.org/10.2174/156720512799015127
  • Coin, A., Pamio, M. V., Alexopoulos, C., Granziera, S., Groppa, F., de Rosa, G., Girardi, A., Sergi, G., Manzato, E., & Padrini, R. (2016). Donepezil plasma concentrations, CYP2D6 and CYP3A4 phenotypes, and cognitive outcome in Alzheimer’s disease. European Journal of Clinical Pharmacology, 72(6), 711–717. https://doi.org/10.1007/s00228-016-2033-1
  • Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. https://doi.org/10.2174/1570159X11311030006
  • Dahlin, J. L., Nissink, J. W. M., Strasser, J. M., Francis, S., Higgins, L., Zhou, H., Zhang, Z., & Walters, M. A. (2015). PAINS in the assay: Chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. Journal of Medicinal Chemistry, 58(5), 2091–2113. https://doi.org/10.1021/jm5019093
  • Daina, A., & Zoete, V. (2016). A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Darvesh, S., Hopkins, D. A., & Geula, C. (2003). Neurobiology of butyrylcholinesterase. Nature Reviews. Neuroscience, 4(2), 131–138. https://doi.org/10.1038/nrn1035
  • Dubey, S., Ganeshpurkar, A., Ganeshpurkar, A., Bansal, D., & Dubey, N. (2017). Glycolytic enzyme inhibitory and antiglycation potential of rutin. Future Journal of Pharmaceutical Sciences, 3(2), 158–162. https://doi.org/10.1016/j.fjps.2017.05.005
  • Ekholm, M. (2001). Predicting relative binding free energies of substrates and inhibitors of acetylcholin- and butyrylcholinesterases. Journal of Molecular Structure, 572(1–3), 25–34. https://doi.org/10.1016/S0166-1280(01)00511-5
  • Ekholm, M., & Konschin, H. (1999). Comparative model building of human butyrylcholinesterase. Journal of Molecular Structure, 467(2), 161–172. https://doi.org/10.1016/S0166-1280(98)00488-6
  • Farlow, M. R. (2003). Clinical pharmacokinetics of galantamine. Clinical Pharmacokinetics, 42(15), 1383–1392. https://doi.org/10.2165/00003088-200342150-00005
  • Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer’s disease: A review of progress. Journal of Neurology, Neurosurgery, and Psychiatry, 66(2), 137–147. https://doi.org/10.1136/jnnp.66.2.137
  • Ganeshpurkar, A., Kumar, D., & Singh, S. K. (2018). Design, synthesis and collagenase inhibitory activity of some novel phenylglycine derivatives as metalloproteinase inhibitors. International Journal of Biological Macromolecules, 107(Pt B), 1491–1500. https://doi.org/10.1016/j.ijbiomac.2017.10.008
  • Ganeshpurkar, A., Singh, R., Gore, P. G., Kumar, D., Gutti, G., Kumar, A., & Singh, S. K. (2020). Structure-based screening and molecular dynamics simulation studies for the identification of potential acetylcholinesterase inhibitors. Molecular Simulation, 46(3), 169–185. https://doi.org/10.1080/08927022.2019.1682572
  • Ganeshpurkar, A., Singh, R., Kumar, D., Gutti, G., Gore, P., Sahu, B., Kumar, A., & Singh, S. K. (2022). Identification of sulfonamide-based butyrylcholinesterase inhibitors using machine learning. Future Medicinal Chemistry, 14(14), 1049–1070. https://doi.org/10.4155/fmc-2021-0325
  • Ganeshpurkar, A., Swetha, R., Kumar, D., Gangaram, G. P., Singh, R., Gutti, G., Jana, S., Kumar, D., Kumar, A., & Singh, S. K. (2019). Protein-protein interactions and aggregation inhibitors in Alzheimer’s disease. Current Topics in Medicinal Chemistry, 19(7), 501–533. https://doi.org/10.2174/1568026619666190304153353
  • Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., & Chong, J. (2016). BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Research, 44(D1), D1045–D1053. https://doi.org/10.1093/nar/gkv1072
  • Greig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q.-S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., & Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17213–17218. https://doi.org/10.1073/pnas.0508575102
  • Hartmann, J., Kiewert, C., Duysen, E. G., Lockridge, O., Greig, N. H., & Klein, J. (2007). Excessive hippocampal acetylcholine levels in acetylcholinesterase‐deficient mice are moderated by butyrylcholinesterase activity. Journal of Neurochemistry, 100(5), 1421–1429. https://doi.org/10.1111/j.1471-4159.2006.04347.x
  • Jana, S., Ganeshpurkar, A., & Singh, S. K. (2018). Multiple 3D-QSAR modeling, e-pharmacophore, molecular docking, and in vitro study to explore novel AChE inhibitors. RSC Advances, 8(69), 39477–39495. https://doi.org/10.1039/c8ra08198k
  • Kim, K., Yao, J., Jin, Z., Zheng, F., & Zhan, C.-G. (2018). Kinetic characterization of cholinesterases and a therapeutically valuable cocaine hydrolase for their catalytic activities against heroin and its metabolite 6-monoacetylmorphine. Chemico-Biological Interactions, 293, 107–114. https://doi.org/10.1016/j.cbi.2018.08.002
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai, Montreal, Canada.
  • Košak, U., Brus, B., Knez, D., Šink, R., Žakelj, S., Trontelj, J., Pišlar, A., Šlenc, J., Gobec, M., Živin, M., Tratnjek, L., Perše, M., Sałat, K., Podkowa, A., Filipek, B., Nachon, F., Brazzolotto, X., Więckowska, A., Malawska, B., … Gobec, S. (2016). Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Scientific Reports, 6(1), 1–16. https://doi.org/10.1038/srep39495
  • Kovarik, Z., & Simeon-Rudolf, V. (2004). Interaction of human butyrylcholinesterase variants with bambuterol and terbutaline. Journal of Enzyme Inhibition and Medicinal Chemistry, 19(2), 113–117. https://doi.org/10.1080/14756360410001667300
  • Kumar, D., Ganeshpurkar, A., Kumar, D., Modi, G., Gupta, S. K., & Singh, S. K. (2018). 2018/03/25/ Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead. European Journal of Medicinal Chemistry, 148, 436–452. https://doi.org/10.1016/j.ejmech.2018.02.035
  • Landrum, G. (2013). Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum, 8, 31.
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Lockridge, O. (2015). Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacology & Therapeutics, 148, 34–46. https://doi.org/10.1016/j.pharmthera.2014.11.011
  • Lockridge, O., Bartels, C. F., Vaughan, T. A., Wong, C. K., Norton, S. E., & Johnson, L. L. (1987). Complete amino acid sequence of human serum cholinesterase. The Journal of Biological Chemistry, 262(2), 549–557. https://doi.org/10.1016/S0021-9258(19)75818-9
  • Lv, W., & Xue, Y. (2010). Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. European Journal of Medicinal Chemistry, 45(3), 1167–1172. https://doi.org/10.1016/j.ejmech.2009.12.038
  • Mahmood, N. A., & Carmichael, W. W. (1987). Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC-525-17. Toxicon: Official Journal of the International Society on Toxinology, 25(11), 1221–1227. https://doi.org/10.1016/0041-0101(87)90140-1
  • Masson, P., Legrand, P., Bartels, C. F., Froment, M. T., Schopfer, L. M., & Lockridge, O. (1997). Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase. Biochemistry, 36(8), 2266–2277. https://doi.org/10.1021/bi962484a
  • Masson, P., Xie, W., Froment, M. T., Levitsky, V., Fortier, P. L., Albaret, C., & Lockridge, O. (1999). Interaction between the peripheral site residues of human butyrylcholinesterase, D70 and Y332, in binding and hydrolysis of substrates. Biochimica et Biophysica Acta, 1433(1-2), 281–293. https://doi.org/10.1016/s0167-4838(99)00115-6
  • Melo, F., et al. (2013). Area under the ROC Curve. In: W. Dubitzky, O. Wolkenhauer, K. H. Cho (Eds.). Encyclopedia of systems biology (p. 38–39). Springer New York.
  • Mesulam, M., Guillozet, A., Shaw, P., & Quinn, B. (2002). Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiology of Disease, 9(1), 88–93. https://doi.org/10.1006/nbdi.2001.0462
  • Mesulam, M.-M., Guillozet, A., Shaw, P., Levey, A., Duysen, E. G., & Lockridge, O. (2002). Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience, 110(4), 627–639. https://doi.org/10.1016/s0306-4522(01)00613-3
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nachon, F., Carletti, E., Ronco, C., Trovaslet, M., Nicolet, Y., Jean, L., & Renard, P.-Y. (2013). Aug 1 Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. The Biochemical Journal, 453(3), 393–399. https://doi.org/10.1042/BJ20130013
  • Perry, E. K., Perry, R. H., Blessed, G., & Tomlinson, B. E. (1978). Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathology and Applied Neurobiology, 4(4), 273–277. https://doi.org/10.1111/j.1365-2990.1978.tb00545.x
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Robitzki, A., Mack, A., Chatonnet, A., & Layer, P. G. (1997). Transfection of reaggregating embryonic chicken retinal cells with an antisense 5′‐DNA butyrylcholinesterase expression vector inhibits proliferation and alters morphogenesis. Journal of Neurochemistry, 69(2), 823–833. https://doi.org/10.1046/j.1471-4159.1997.69020823.x
  • Tago, H., Maeda, T., McGeer, P. L., & Kimura, H. (1992). Butyrylcholinesterase‐rich neurons in rat brain demonstrated by a sensitive histochemical method. The Journal of Comparative Neurology, 325(2), 301–312. https://doi.org/10.1002/cne.903250212
  • Tobita, M., Nishikawa, T., & Nagashima, R. (2005). A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors. Bioorganic & Medicinal Chemistry Letters, 15(11), 2886–2890. https://doi.org/10.1016/j.bmcl.2005.03.080
  • Tosco, P., Stiefl, N., & Landrum, G. (2014). Bringing the MMFF force field to the RDKit: Implementation and validation. Journal of Cheminformatics, 6(1), 37. https://doi.org/10.1186/s13321-014-0037-3
  • Wlodarczyk, J. H., Brodaty, H., & Hawthorne, G. (2004). The relationship between quality of life, mini-mental state examination, and the instrumental activities of daily living in patients with Alzheimer’s disease. Archives of Gerontology and Geriatrics, 39(1), 25–33. https://doi.org/10.1016/j.archger.2003.12.004
  • Zemek, F., Drtinova, L., Nepovimova, E., et al. (2014). Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opinion on Drug Safety, 13(6), 759–774.
  • Zhou, G., Marathe, G. K., Hartiala, J., Hazen, S. L., Allayee, H., Tang, W. H. W., & McIntyre, T. M. (2013). Aspirin hydrolysis in plasma is a variable function of butyrylcholinesterase and platelet-activating factor acetylhydrolase 1b2 (PAFAH1b2). The Journal of Biological Chemistry, 288(17), 11940–11948. https://doi.org/10.1074/jbc.M112.427674

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.