137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, spectroscopic analysis, and computational-based investigations on ‘azo-coumarin-Co(II)-galangin’ hybrids exhibit multipotential activities

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 16 Nov 2022, Accepted 28 Feb 2024, Published online: 14 Mar 2024

References

  • Ali, Y., Hamid, S. A., & Rashid, U. (2018). Biomedical applications of aromatic azo compounds. Mini Reviews in Medicinal Chemistry, 18(18), 1548–1558. https://doi.org/10.2174/1389557518666180524113111
  • Almatroodi, S. A., Almatroudi, A., Khan, A. A., Alhumaydhi, F. A., Alsahli, M. A., & Rahmani, A. H. (2020). Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules (Basel, Switzerland), 25(14), 3146. https://doi.org/10.3390/molecules25143146
  • Anthony, E. J., Bolitho, E. M., Bridgewater, H. E., Carter, O. W. L., Donnelly, J. M., Imberti, C., Lant, E. C., Lermyte, F., Needham, R. J., Palau, M., Sadler, P. J., Shi, H., Wang, F. X., Zhang, W. Y., & Zhang, Z. (2020). Metallodrugs are unique: Opportunities and challenges of discovery and development. Chemical Science, 11(48), 12888–12917. https://doi.org/10.1039/d0sc04082g
  • Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
  • Boros, E., Dyson, P. J., & Gasser, G. (2020). Classification of metal-based drugs according to their mechanisms of action. Chem, 6(1), 41–60. https://doi.org/10.1016/j.chempr.2019.10.013
  • Boy, S., Aras, A., Türkan, F., Akyıldırım, O., Beytur, M., Sedef Karaman, H., Manap, S., & Yüksek, H. (2021). Synthesis, spectroscopic analysis, and in vitro/in silico biological studies of novel piperidine derivatives heterocyclic Schiff-Mannich base compounds. Chemistry & Biodiversity, 18(12), e2100433. https://doi.org/10.1002/cbdv.202100433
  • Buczkowska, M., Bodtke, A., Lindequist, U., Gdaniec, M., & Bednarski, P. J. (2011). Cytotoxic and antimicrobial activities of Cu(II), Co(II), Pt(II) and Zn(II) Complexes with N,O-chelating heterocyclic carboxylates. Archiv Der Pharmazie, 344(9), 605–616. https://doi.org/10.1002/ardp.201100101
  • Cavasotto, C. N., & Di Filippo, J. I. (2021). Artificial intelligence in the early stages of drug discovery. Archives of Biochemistry and Biophysics, 698, 108730. https://doi.org/10.1016/j.abb.2020.108730
  • Edo, G. I., Ugbune, U., Onoharigho, F. O., Ezekiel, G. O., Ugbuwe, E., & Agbo, J. J. (2023). Investigation of the metal complexes and bioactive compound formed by coordination of bioactive phytochemical from ginger (Zingiber officinale) extracts to metal ions. Food Chemistry Advances, 3, 100337. https://doi.org/10.1016/j.focha.2023.100337
  • El-Attar, M. S., Elshafie, H. S., Sadeek, S. A., El-Farargy, A. F., El-Desoky, S. I., El-Shwiniy, W. H., & Camele, I. (2022). Biochemical characterization and antimicrobial activity against some human or phyto-pathogens of new diazonium heterocyclic metal complexes. Chemistry & Biodiversity, 19(2), e202100785. https://doi.org/10.1002/cbdv.202100785
  • El-Baradie, K., El-Sharkawy, R., El-Ghamry, H., & Sakai, K. (2014). Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfadrug azodyes and their application for wastewater treatment. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 121, 180–187. https://doi.org/10.1016/j.saa.2013.09.070
  • Fogel, D. B. (2018). Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemporary Clinical Trials Communications, 11, 156–164. https://doi.org/10.1016/j.conctc.2018.08.001
  • Heffern, M. C., Yamamoto, N., Holbrook, R. J., Eckermann, A. L., & Meade, T. J. (2013). Cobalt derivatives as promising therapeutic agents. Current Opinion in Chemical Biology, 17(2), 189–196. https://doi.org/10.1016/j.cbpa.2012.11.019
  • Ismael, M., Abdel-Rahman, L. H., Abou El-Ezz, D., Ahmed, E. A., & Nafady, A. (2021). Synthesis, structural characterization, and biological studies of ATBS-M complexes (M(II) = Cu, Co, Ni, and Mn): Access for promising antibiotics and anticancer agents. Archiv Der Pharmazie, 354(4), e2000241. https://doi.org/10.1002/ardp.202000241
  • Jamil, W., Shaikh, J., Yousuf, M., Taha, M., Khan, K. M., & Shah, S. A. A. (2022). Synthesis, anti-diabetic and in silico QSAR analysis of flavone hydrazide Schiff base derivatives. Journal of Biomolecular Structure & Dynamics, 40(23), 12723–12738. https://doi.org/10.1080/07391102.2021.1975565
  • Jia, C. Y., Li, J. Y., Hao, G. F., & Yang, G. F. (2020). A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today, 25(1), 248–258. https://doi.org/10.1016/j.drudis.2019.10.014
  • Kar, S., & Leszczynski, J. (2020). Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opinion on Drug Discovery, 15(12), 1473–1487. https://doi.org/10.1080/17460441.2020.1798926
  • Khan, T., & Gurav, P. (2017). PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs. Frontiers in Pharmacology, 8, 1002. https://doi.org/10.3389/fphar.2017.01002
  • Kiriiri, G. K., Njogu, P. M., & Mwangi, A. N. (2020). Exploring different approaches to improve the success of drug discovery and development projects: A review. Future Journal of Pharmaceutical Sciences, 6(1), 27. https://doi.org/10.1186/s43094-020-00047-9
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lombardino, J. G., & Lowe, J. A. 3rd. (2004). The role of the medicinal chemist in drug discovery–then and now. Nature Reviews. Drug Discovery, 3(10), 853–862. https://doi.org/10.1038/nrd1523
  • Machado, D., Girardini, M., Viveiros, M., & Pieroni, M. (2018). Challenging the drug-likeness dogma for new drug discovery in tuberculosis. Frontiers in Microbiology, 9, 1367. https://doi.org/10.3389/fmicb.2018.01367
  • Mishra, S., Pandey, A., & Manvati, S. (2020). Coumarin: An emerging antiviral agent. Heliyon, 6(1), e03217. https://doi.org/10.1016/j.heliyon.2020.e03217
  • Mohammed, F. Z., Rizzk, Y. W., El Deen, I. M., Mourad, A. A. E., & El Behery, M. (2021). Design, synthesis, cytotoxic screening and molecular docking studies of novel hybrid thiosemicarbazone derivatives as anticancer agents. Chemistry & Biodiversity, 18(12), e2100580. https://doi.org/10.1002/cbdv.202100580
  • Motloung, D. M., Mashele, S. S., Matowane, G. R., Swain, S. S., Bonnet, S. L., Noreljaleel, A. E. M., Oyedemi, S. O., & Chukwuma, C. I. (2020). Synthesis, characterization, antidiabetic and antioxidative evaluation of a novel Zn(II)-gallic acid complex with multi-facet activity. The Journal of Pharmacy and Pharmacology, 72(10), 1412–1426. https://doi.org/10.1111/jphp.13322
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Ng, P. Q., Ling, L. S. C., Chellian, J., Madheswaran, T., Panneerselvam, J., Kunnath, A. P., Gupta, G., Satija, S., Mehta, M., Hansbro, P. M., Collet, T., Dua, K., & Chellappan, D. K. (2020). Applications of nanocarriers as drug delivery vehicles for active phytoconstituents. Current Pharmaceutical Design, 26(36), 4580–4590. https://doi.org/10.2174/1381612826666200610111013
  • Nichols, P. L. (2021). Automated and enabling technologies for medicinal chemistry. Progress in Medicinal Chemistry, 60, 191–272. https://doi.org/10.1016/bs.pmch.2021.01.003
  • Palermo, G., Spinello, A., Saha, A., & Magistrato, A. (2021). Frontiers of metal-coordinating drug design. Expert Opinion on Drug Discovery, 16(5), 497–511. https://doi.org/10.1080/17460441.2021.1851188
  • Plenge, R. M. (2016). Disciplined approach to drug discovery and early development. Science Translational Medicine, 8(349), 349ps15. https://doi.org/10.1126/scitranslmed.aaf2608
  • Ramorobi, L. M., Matowane, G. R., Mashele, S. S., Swain, S. S., Makhafola, T. J., Mfengwana, P. H., & Chukwuma, C. I. (2022). Zinc(II)-syringic acid complexation synergistically exerts antioxidant action and modulates glucose uptake and utilization in L-6 myotubes and rat muscle tissue. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 154, 113600. https://doi.org/10.1016/j.biopha.2022.113600
  • Roy, S., Das, S. K., & Chattopadhyay, B. (2018). Cobalt(II)-based metalloradical activation of 2-(diazomethyl)pyridines for radical transannulation and cyclopropanation. Angewandte Chemie (International ed. in English), 57(8), 2238–2243. https://doi.org/10.1002/anie.201711209
  • Sahoo, A., Fuloria, S., Swain, S. S., Panda, S. K., Sekar, M., Subramaniyan, V., Panda, M., Jena, A. K., Sathasivam, K. V., & Fuloria, N. K. (2021). Potential of marine terpenoids against SARS-CoV-2: An in silico drug development approach. Biomedicines, 9(11), 1505. https://doi.org/10.3390/biomedicines9111505
  • Sahoo, J., & Paidesetty, S. K. (2017). Biological investigation of novel metal complexes of 2-amino-4-substituted phenylthiazole Schiff bases. Journal of Taibah University Medical Sciences, 13(2), 142–155. https://doi.org/10.1016/j.jtumed.2017.10.007
  • Sahoo, A., Swain, S. S., Paital, B., & Panda, M. (2022). Combinatorial approach of vitamin C derivative and anti-HIV drug-darunavir against SARS-CoV-2. Frontiers in Bioscience (Landmark Edition), 27(1), 10. https://doi.org/10.31083/j.fbl2701010
  • Sahoo, A., Swain, S. S., Panda, S. K., Hussain, T., Panda, M., & Rodrigues, C. F. (2022). In silico identification of potential insect peptides against biofilm-producing Staphylococcus aureus. Chemistry & Biodiversity, 19(10), e202200494. https://doi.org/10.1002/cbdv.202200494
  • Seyhan, A. A. (2019). Lost in translation: The valley of death across preclinical and clinical divide –identification of problems and overcoming obstacles. Translational Medicine Communications, 4(1). https://doi.org/10.1186/s41231-019-0050-7
  • Shalash, A. M., & Abu Ali, H. I. (2017). Synthesis, crystallographic, spectroscopic studies and biological activity of new cobalt(II) complexes with bioactive mixed sulindac and nitrogen-donor ligands. Chemistry Central Journal, 11(1), 40. https://doi.org/10.1186/s13065-017-0268-2
  • Stefanachi, A., Leonetti, F., Pisani, L., Catto, M., & Carotti, A. (2018). Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules (Basel, Switzerland), 23(2), 250. https://doi.org/10.3390/molecules23020250
  • Sun, H., Liu, Z., Zhao, H., & Ang, E. L. (2015). Recent advances in combinatorial biosynthesis for drug discovery. Drug Design, Development and Therapy, 9, 823–833. https://doi.org/10.2147/DDDT.S63023
  • Swain, S. S., & Hussain, T. (2022). Combined bioinformatics and combinatorial chemistry tools to locate drug-able anti-tb phytochemicals: A cost-effective platform for natural product-based drug discovery. Chemistry & Biodiversity, 19(11), e202200267. https://doi.org/10.1002/cbdv.202200267
  • Swain, S. S., Hussain, T., & Pati, S. (2021). Drug-lead anti-tuberculosis phytochemicals: A systematic review. Current Topics in Medicinal Chemistry, 21(20), 1832–1868. https://doi.org/10.2174/1568026621666210705170510
  • Swain, S. S., Paidesetty, S. K., Dehury, B., Das, M., Vedithi, S. C., & Padhy, R. N. (2020). Computer-aided synthesis of dapsone-phytochemical conjugates against dapsone-resistant Mycobacterium leprae. Scientific Reports, 10(1), 6839. https://doi.org/10.1038/s41598-020-63913-9
  • Swain, S. S., Paidesetty, S. K., Dehury, B., Sahoo, J., Vedithi, S. C., Mahapatra, N., Hussain, T., & Padhy, R. N. (2018). Molecular docking and simulation study for synthesis of alternative dapsone derivative as a newer antileprosy drug in multidrug therapy. Journal of Cellular Biochemistry, 119(12), 9838–9852. https://doi.org/10.1002/jcb.27304
  • Swain, S. S., Paidesetty, S. K., & Padhy, R. N. (2017). Antibacterial activity, computational analysis and host toxicity study of thymol-sulfonamide conjugates. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 88, 181–193. https://doi.org/10.1016/j.biopha.2017.01.036
  • Swain, S. S., Panda, S. K., & Luyten, W. (2021). Phytochemicals against SARS-CoV as potential drug leads. Biomedical Journal, 44(1), 74–85. https://doi.org/10.1016/j.bj.2020.12.002
  • Swain, S. S., Pati, S., & Hussain, T. (2022). Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. European Journal of Medicinal Chemistry, 232, 114173. https://doi.org/10.1016/j.ejmech.2022.114173
  • Swain, S. S., Rout, S. S., Sahoo, A., Oyedemi, S. O., & Hussain, T. (2022). Antituberculosis, antioxidant and cytotoxicity profiles of quercetin: A systematic and cost-effective in silico and in vitro approach. Natural Product Research, 36(18), 4763–4767. https://doi.org/10.1080/14786419.2021.2008387
  • Swain, S. S., Singh, S. R., Sahoo, A., Hussain, T., & Pati, S. (2022). Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: A molecular docking-simulation base assessment. Journal of Biomolecular Structure & Dynamics, 40(14), 6463–6476. https://doi.org/10.1080/07391102.2021.1885495
  • Swain, S. S., Singh, S. R., Sahoo, A., Panda, P. K., Hussain, T., & Pati, S. (2022b). Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro. Proteins, 90(9), 1617–1633. https://doi.org/10.1002/prot.26341
  • Tahir, T., Ashfaq, M., Saleem, M., Rafiq, M., Shahzad, M. I., Kotwica-Mojzych, K., & Mojzych, M. (2021). Pyridine Scaffolds, phenols and derivatives of azo moiety: Current therapeutic perspectives. Molecules (Basel, Switzerland), 26(16), 4872. https://doi.org/10.3390/molecules26164872
  • Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews. Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5
  • Wooller, S. K., Benstead-Hume, G., Chen, X., Ali, Y., & Pearl, F. M. G. (2017). Bioinformatics in translational drug discovery. Bioscience Reports, 37(4), BSR20160180. https://doi.org/10.1042/BSR20160180
  • Wright, P. M., Seiple, I. B., & Myers, A. G. (2014). The evolving role of chemical synthesis in antibacterial drug discovery. Angewandte Chemie (International ed. in English), 53(34), 8840–8869. https://doi.org/10.1002/anie.201310843
  • Wu, F., Zhou, Y., Li, L., Shen, X., Chen, G., Wang, X., Liang, X., Tan, M., & Huang, Z. (2020). Computational approaches in preclinical studies on drug discovery and development. Frontiers in Chemistry, 8, 726. https://doi.org/10.3389/fchem.2020.00726

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.