49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A quinoxaline-based derivative exhibited potent and selective anticancer activity with apoptosis induction in PC-3 cells through Topo II inhibition

, ORCID Icon, & ORCID Icon
Received 03 Oct 2023, Accepted 03 Mar 2024, Published online: 14 Mar 2024

References

  • Abbas, H.-A. S., Al-Marhabi, A. R., Eissa, S. I., & Ammar, Y. A. (2015). Molecular modeling studies and synthesis of novel quinoxaline derivatives with potential anticancer activity as inhibitors of c-Met kinase. Bioorganic & Medicinal Chemistry, 23(20), 6560–6572. https://doi.org/10.1016/j.bmc.2015.09.023
  • Abd-Elhamid, R., Nazmy, M., & Fathy, M. (2020). Targeting apoptosis as a therapeutic approach in cancer. Minia Journal of Medical Research, 31(2), 321–334. https://doi.org/10.21608/mjmr.2022.221093
  • Adeshina, A., & Solomon, J. (2014). Urea and Creatinine of clarias gariepinus in three commercial ponds.
  • Ahmed, M. F., & Almalki, A. H. (2021). Design, synthesis, anti-proliferative activity, and cell cycle analysis of new thiosemicarbazone derivatives targeting ribonucleotide reductase. Arabian Journal of Chemistry, 14(3), 102989. https://doi.org/10.1016/j.arabjc.2021.102989
  • Ahmed, M. H., El-Hashash, M. A., Marzouk, M. I., & El-Naggar, A. M. (2020). Synthesis and antitumor activity of some nitrogen heterocycles bearing pyrimidine moiety. Journal of Heterocyclic Chemistry, 57(9), 3412–3427. https://doi.org/10.1002/jhet.4061
  • Ahmed, E. A., Mohamed, M. F. A., Omran, A., & Salah, H. (2020). Synthesis, EGFR-TK inhibition and anticancer activity of new quinoxaline derivatives. Synthetic Communications, 50(19), 2924–2940. https://doi.org/10.1080/00397911.2020.1787448
  • Ajani, O. O., Nlebemuo, M. T., Adekoya, J. A., Ogunniran, K. O., Siyanbola, T. O., & Ajanaku, C. O. (2019). Chemistry and pharmacological diversity of quinoxaline motifs as anticancer agents. Acta Pharmaceutica (Zagreb, Croatia), 69(2), 177–196. https://doi.org/10.2478/acph-2019-0013
  • Alanazi, M. M., Elwan, A., Alsaif, N. A., Obaidullah, A. J., Alkahtani, H. M., Al-Mehizia, A. A., Alsubaie, S. M., Taghour, M. S., & Eissa, I. H. (2021). Discovery of new 3-methylquinoxalines as potential anticancer agents and apoptosis inducers targeting VEGFR-2: Design, synthesis, and in silico studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 1732–1750. https://doi.org/10.1080/14756366.2021.1945591
  • AlDubayan, S. H. (2019). Leveraging clinical tumor-profiling programs to achieve comprehensive germline-inclusive precision cancer medicine. Journal of Clinical Oncology Precision Oncology, 3(3), 1–3. https://doi.org/10.1200/PO.19.00108
  • Al-Mutairi, F. M., Abdel-Daim, M. M., Ibrahim, I. T., Habib, S. A., & Waly, H. M. (2016). The Potent Effect of a Newly Synthesized N-Butylpyridoquinoxaline 1,4-dioxide (NBPQD) Derivative as Antitumor agent in solid tumor model.
  • Alsaif, N. A., Dahab, M. A., Alanazi, Mohammed, M., Obaidullah, A. J., Al-Mehizia, A. A., Alanazi, Manal, M., Aldawas, S., Mahdy, H. A., & Elkady, H. (2021). New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: Design, molecular modeling, and synthesis. Bioorganic Chemistry, 110, 104807. https://doi.org/10.1016/j.bioorg.2021.104807
  • Anic, K., Schmidt, M. W., Schmidt, M., Krajnak, S., Löwe, A., Linz, V. C., Schwab, R., Weikel, W., Brenner, W., Westphalen, C., Rissel, R., Hartmann, E. K., Conradi, R., Hasenburg, A., & Battista, M. J. (2022). Impact of perioperative red blood cell transfusion, anemia of cancer and global health status on the prognosis of elderly patients with endometrial and ovarian cancer. Frontiers in Oncology, 12, 967421. https://doi.org/10.3389/fonc.2022.967421
  • Bonilla-Ramirez, L., Rios, A., Quiliano, M., Ramirez-Calderon, G., Beltrán-Hortelano, I., Franetich, J. F., Corcuera, L., Bordessoulles, M., Vettorazzi, A., López de Cerain, A., Aldana, I., Mazier, D., Pabón, A., & Galiano, S. (2018). Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. European Journal of Medicinal Chemistry, 158, 68–81. https://doi.org/10.1016/j.ejmech.2018.08.063
  • Boraei, A. T. A., Eltamany, E. H., Ali, I. A. I., Gebriel, S. M., & Nafie, M. S. (2021). Synthesis of new substituted pyridine derivatives as potent anti-liver cancer agents through apoptosis induction: In vitro, in vivo, and in silico integrated approaches. Bioorganic Chemistry, 111, 104877. https://doi.org/10.1016/j.bioorg.2021.104877
  • Buergy, D., Wenz, F., Groden, C., & Brockmann, M. A. (2012). Tumor–platelet interaction in solid tumors. International Journal of Cancer, 130(12), 2747–2760. https://doi.org/10.1002/ijc.27441
  • Carneiro, B. A., & El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy. Nature Reviews. Clinical Oncology, 17(7), 395–417. https://doi.org/10.1038/s41571-020-0341-y
  • Chen, C., Lu, L., Yan, S., Yi, H., Yao, H., Wu, D., He, G., Tao, X., & Deng, X. (2018). Autophagy and doxorubicin resistance in cancer. Anti-Cancer Drugs, 29(1), 1–9. https://doi.org/10.1097/CAD.0000000000000572
  • Clarke, H., & Pallister, C. J. (2005). The impact of anaemia on outcome in cancer. Clinical and Laboratory Haematology, 27(1), 1–13. https://doi.org/10.1111/j.1365-2257.2004.00664.x
  • de Gaetano, M., Tighe, C., Gahan, K., Zanetti, A., Chen, J., Newson, J., Cacace, A., Marai, M., Gaffney, A., Brennan, E., Kantharidis, P., Cooper, M. E., Leroy, X., Perretti, M., Gilroy, D., Godson, C., & Guiry, P. J. (2021). Asymmetric synthesis and biological screening of quinoxaline-containing synthetic lipoxin A4 mimetics (QNX-sLXms). Journal of Medicinal Chemistry, 64(13), 9193–9216. https://doi.org/10.1021/acs.jmedchem.1c00403
  • Desplat, V., Vincenzi, M., Lucas, R., Moreau, S., Savrimoutou, S., Pinaud, N., Lesbordes, J., Peyrilles, E., Marchivie, M., Routier, S., Sonnet, P., Rossi, F., Ronga, L., & Guillon, J. (2016). Synthesis and evaluation of the cytotoxic activity of novel ethyl 4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxaline-carboxylate derivatives in myeloid and lymphoid leukemia cell lines. European Journal of Medicinal Chemistry, 113, 214–227. https://doi.org/10.1016/j.ejmech.2016.02.047
  • Eissa, I. H., Metwaly, A. M., Belal, A., Mehany, A. B. M., Ayyad, R. R., El-Adl, K., Mahdy, H. A., Taghour, M. S., El-Gamal, K. M. A., El-Sawah, M. E., Elmetwally, S. A., Elhendawy, M. A., Radwan, M. M., & ElSohly, M. A. (2019). Discovery and anti-proliferative evaluation of new quinoxalines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim), 352(11), e1900123. https://doi.org/10.1002/ardp.201900123
  • El Newahie, A. M. S., Ismail, N. S. M., Abou El Ella, D. A., Abouzid K., & A. M. (2016). Quinoxaline-based scaffolds targeting tyrosine kinases and their potential anticancer activity. Archiv Der Pharmazie, 349(5), 309–326. https://doi.org/10.1002/ardp.201500468
  • El Newahie, A. M. S., Nissan, Y. M., Ismail, N. S. M., Abou El Ella, D. A., Khojah, S. M., & Abouzid K. A. M. (2019). Design and synthesis of new quinoxaline derivatives as anticancer agents and apoptotic inducers. Molecules (Basel, Switzerland), 24(6), 1175. https://doi.org/10.3390/molecules24061175
  • El Rayes, S. M., Aboelmagd, A., Gomaa, M. S., Ali, I., A. I., Fathalla, W., Pottoo, F. H., & Khan, F. A. (2019). Convenient synthesis and anticancer activity of methyl 2-[3-(3-phenyl-quinoxalin-2-ylsulfanyl)propanamido]alkanoates and N-alkyl 3-((3-Phenyl-quinoxalin-2-yl)sulfanyl)propanamides. ACS Omega, 4(20), 18555–18566. https://doi.org/10.1021/acsomega.9b02320
  • El-Atawy, M. A., Hamed, E. A., Alhadi, M., & Omar, A. Z. (2019). Synthesis and antimicrobial activity of some new substituted quinoxalines. Molecules (Basel, Switzerland), 24(22), 4198. https://doi.org/10.3390/molecules24224198
  • El-Metwally, S. A., Abou-El-Regal, M. M., Eissa, I. H., Mehany, A. B. M., Mahdy, H. A., Elkady, H., Elwan, A., & Elkaeed, E. B. (2021). Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anticancer agents. Bioorganic Chemistry, 112, 104947. https://doi.org/10.1016/j.bioorg.2021.104947
  • Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337
  • Estes, J. M., Leath, C. A., Williams, S., Modiano, M. R., Sawyer, M., Cohn, D., Straughn, J. M., Barnes, M. N., & Alvarez, R. D. (2006). Efficacy and toxicity of the novel chemotherapeutic agent KW-2170 in recurrent epithelial ovarian cancer. Gynecologic Oncology, 102(2), 338–342. https://doi.org/10.1016/j.ygyno.2005.12.031
  • Fan, D., Liu, P., Jiang, Y., He, X., Zhang, L., Wang, L., & Yang, T. (2022). Discovery and SAR study of quinoxaline–arylfuran derivatives as a new class of antitumor agents. Pharmaceutics, 14(11), 2420. https://doi.org/10.3390/pharmaceutics14112420
  • Fayed, E. A., Ammar, Y. A., Ragab, A., Gohar, N. A., Mehany, A. B. M., & Farrag, A. M. (2020). In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorganic Chemistry, 100, 103951. https://doi.org/10.1016/j.bioorg.2020.103951
  • Ferrão, J. B., Sardinha, M. P., & Dutra, E. (2021). Hyperleukocytosis in solid tumors: a rare paraneoplastic syndrome associated with poor prognosis. The American Journal of the Medical Sciences, 362(2), 211–214. https://doi.org/10.1016/j.amjms.2021.01.027
  • Franco, P., Montagnani, F., Arcadipane, F., Casadei, C., Andrikou, K., Martini, S., Iorio, G. C., Scartozzi, M., Mistrangelo, M., Fornaro, L., Cassoni, P., Cascinu, S., Ricardi, U., & Casadei Gardini, A. (2018). The prognostic role of hemoglobin levels in patients undergoing concurrent chemo-radiation for anal cancer. Radiation Oncology, 13(1), 83. https://doi.org/10.1186/s13014-018-1035-9
  • Ghanavat, M., Ebrahimi, M., Rafieemehr, H., Maniati, M., Behzad, M. M., & Shahrabi, S. (2019). Thrombocytopenia in solid tumors: Prognostic significance. Oncology Reviews, 13(1), 413. https://doi.org/10.4081/oncol.2019.413
  • Goldar, S., Khaniani, M. S., Derakhshan, S. M., & Baradaran, B. (2015). Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pacific Journal of Cancer Prevention: APJCP, 16(6), 2129–2144. https://doi.org/10.7314/APJCP.2015.16.6.2129
  • Habib, S. A., Ibrahim, I. T., Abd-Eldaye, M. A., El-Sheshtawey, M. M., & Waly, H. M. (2012). N-Butylpyridoquinoxaline 1,4-dioxide (NBPQD) as a new potent for tumor imaging and therapy. Natural Science, 04(12), 1074–1084. https://doi.org/10.4236/ns.2012.412136
  • Haffner, M. C., Aryee, M. J., Toubaji, A., Esopi, D. M., Albadine, R., Gurel, B., Isaacs, W. B., Bova, G. S., Liu, W., Xu, J., Meeker, A. K., Netto, G., De Marzo, A. M., Nelson, W. G., & Yegnasubramanian, S. (2010). Androgen-induced TOP2B mediated double strand breaks and prostate cancer gene rearrangements. Nature Genetics, 42(8), 668–675. https://doi.org/10.1038/ng.613
  • Hajri, M., Esteve, M.-A., Khoumeri, O., Abderrahim, R., Terme, T., Montana, M., & Vanelle, P. (2016). Synthesis and evaluation of in vitro anti-proliferative activity of new ethyl 3-(arylethynyl)quinoxaline-2-carboxylate and pyrido[4,3-b]quinoxalin-1(2H)-one derivatives. European Journal of Medicinal Chemistry, 124, 959–966. https://doi.org/10.1016/j.ejmech.2016.10.025
  • Hamdy, R., Elseginy, S. A., Ziedan, N. I., Jones, A. T., & Westwell, A. D. (2019). New quinoline-based heterocycles as anticancer agents targeting Bcl-2. Molecules (Basel, Switzerland), 24(7), 1274. https://doi.org/10.3390/molecules24071274
  • Hughes, C., Murphy, A., Martin, C., Fox, E., Ring, M., Sheils, O., Loftus, B., & O'Leary, J. (2006). Topoisomerase II‐α expression increases with increasing Gleason score and with hormone insensitivity in prostate carcinoma. Journal of Clinical Pathology, 59(7), 721–724. https://doi.org/10.1136/jcp.2005.029975
  • Ibrahim, M. K., Taghour, M. S., Metwaly, A. M., Belal, A., Mehany, A. B. M., Elhendawy, M. A., Radwan, M. M., Yassin, A. M., El-Deeb, N. M., Hafez, E. E., ElSohly, M. A., & Eissa, I. H. (2018). Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. European Journal of Medicinal Chemistry, 155, 117–134. https://doi.org/10.1016/j.ejmech.2018.06.004
  • Ibrahim, I., & Wally, M. (2010). Synthesis, labeling and biodistribution of 99m Tc3-amino-2-quinoxalin-carbonitrile 1,4-dioxide in tumor bearing mice. Journal of Radioanalytical and Nuclear Chemistry, 285(2), 169–175. https://doi.org/10.1007/s10967-009-0039-1
  • Ismail, M. M. F., Amin, K. M., Noaman, E., Soliman, D. H., & Ammar, Y. A. (2010). New quinoxaline 1, 4-di-N-oxides: Anticancer and hypoxia-selective therapeutic agents. European Journal of Medicinal Chemistry, 45(7), 2733–2738. https://doi.org/10.1016/j.ejmech.2010.02.052
  • Jang, D., Lee, A.-H., Shin, H.-Y., Song, H.-R., Park, J.-H., Kang, T.-B., Lee, S.-R., & Yang, S.-H. (2021). The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. International Journal of Molecular Sciences, 22(5), 2719. https://doi.org/10.3390/ijms22052719
  • Jeon, K.-H., Park, S., Jang, H. J., Hwang, S.-Y., Shrestha, A., Lee, E.-S., & Kwon, Y. (2021). AK-I-190, a new catalytic inhibitor of topoisomerase ii with anti-proliferative and pro-apoptotic activity on androgen-negative prostate cancer cells. International Journal of Molecular Sciences, 22(20), 11246. https://doi.org/10.3390/ijms222011246
  • Kaplum, V., Cogo, J., Sangi, D. P., Ueda-Nakamura, T., Corrêa, A. G., & Nakamura, C. V. (2016). In vitro and in vivo activities of 2,3-diarylsubstituted quinoxaline derivatives against Leishmania amazonensis. Antimicrobial Agents and Chemotherapy, 60(6), 3433–3444. https://doi.org/10.1128/AAC.02582-15
  • Khalifa, M. M., Al-Karmalawy, A. A., Elkaeed, E. B., Nafie, M. S., Tantawy, M. A., Eissa, I. H., & Mahdy, H. A. (2022). Topo II inhibition and DNA intercalation by new phthalazine-based derivatives as potent anticancer agents: Design, synthesis, anti-proliferative, docking, and in vivo studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 299–314. https://doi.org/10.1080/14756366.2021.2007905
  • Kumar, A., Singh, A. K., Singh, H., Vijayan, V., Kumar, D., Naik, J., Thareja, S., Yadav, J. P., Pathak, P., Grishina, M., Verma, A., Khalilullah, H., Jaremko, M., Emwas, A.-H., & Kumar, P. (2023). Nitrogen containing heterocycles as anticancer agents: A medicinal chemistry perspective. Pharmaceuticals (Basel, Switzerland), 16(2), 299. https://doi.org/10.3390/ph16020299
  • Li, J., & Yuan, J. (2008). Caspases in apoptosis and beyond. Oncogene, 27(48), 6194–6206. https://doi.org/10.1038/onc.2008.297
  • Lin, J., Wang, P., Zhang, Z., Xue, G., Zha, D., Wang, J., Xu, X., & Li, Z. (2020). Facile synthesis and anti-proliferative activity evaluation of quinoxaline derivatives. Synthetic Communications, 50(6), 823–830. https://doi.org/10.1080/00397911.2020.1714054
  • Liu, Q.-Q., Lu, K., Zhu, H.-M., Kong, S.-L., Yuan, J.-M., Zhang, G.-H., Chen, N.-Y., Gu, C.-X., Pan, C.-X., Mo, D.-L., & Su, G.-F. (2019). Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure-based design, synthesis, and bioactive evaluation in vitro and in vivo. European Journal of Medicinal Chemistry, 165, 293–308. https://doi.org/10.1016/j.ejmech.2019.01.004
  • Lv, H., Wang, F., Reddy, M. V. R., Zhou, Q., Zhang, X., Reddy, E. P., & Gallo, J. M. (2012). Screening candidate anticancer drugs for brain tumor chemotherapy: Pharmacokinetic-driven approach for a series of (E)-N-(substituted aryl)-3-(substituted phenyl)propenamide analogues. Investigational New Drugs, 30(6), 2263–2273. https://doi.org/10.1007/s10637-012-9806-x
  • Madia, V. N., Nicolai, A., Messore, A., De Leo, A., Ialongo, D., Tudino, V., Saccoliti, F., De Vita, D., Scipione, L., Artico, M., Taurone, S., Taglieri, L., Di Santo, R., Scarpa, S., & Costi, R. (2021). Design, synthesis and biological evaluation of new pyrimidine derivatives as anticancer agents. Molecules (Basel, Switzerland), 26(3), 771. https://doi.org/10.3390/molecules26030771
  • Min, K. N., Joung, K. E., Kim, D.-K., & Sheen, Y. Y. (2012). Anticancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer. Environmental Health and Toxicology, 27, e2012010. https://doi.org/10.5620/eht.2012.27.e2012010
  • Montana, M., Montero, V., Khoumeri, O., & Vanelle, P. (2020). Quinoxaline derivatives as antiviral agents: A systematic review. Molecules (Basel, Switzerland), 25(12), 2784. https://doi.org/10.3390/molecules25122784
  • Morjaria, S., Deleuze-Masquefa, C., Lafont, V., Gayraud, S., Bompart, J., Bonnet, P. A., & Dornand, J. (2006). Impairment of TNF-α production and action by Imidazo[1,2-α] quinoxalines, as derivative family which displays potential anti-inflammatory properties. International Journal of Immunopathology and Pharmacology, 19(3), 525–538. https://doi.org/10.1177/039463200601900308
  • Nafie, M. S., Khodair, A. I., Hassan, H. A. Y., El-Fadeal, N., M. A., Bogari, H. A., Elhady, S. S., & Ahmed, S. A. (2021). Evaluation of 2-thioxoimadazolidin-4-one derivatives as potent anticancer agents through apoptosis induction and antioxidant activation: In vitro and in vivo approaches. Molecules (Basel, Switzerland), 27(1), 83. https://doi.org/10.3390/molecules27010083
  • Nelson, W. G., Haffner, M. C., & Yegnasubramanian, S. (2018). The structure of the nucleus in normal and neoplastic prostate cells: Untangling the role of type 2 DNA topoisomerases. American Journal of Clinical and Experimental Urology, 6(2), 107–113.
  • Nikoletopoulou, V., Markaki, M., Palikaras, K., & Tavernarakis, N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochimica et Biophysica Acta, 1833(12), 3448–3459. https://doi.org/10.1016/j.bbamcr.2013.06.001
  • Omuse, G., Maina, D., Mwangi, J., Wambua, C., Radia, K., Kanyua, A., Kagotho, E., Hoffman, M., Ojwang, P., Premji, Z., Ichihara, K., & Erasmus, R. (2018). Complete blood count reference intervals from a healthy adult urban population in Kenya. PLoS One, 13(6), e0198444. https://doi.org/10.1371/journal.pone.0198444
  • Osmaniye, D., Hıdır, A., Sağlık, B. N., Levent, S., Özkay, Y., & Kaplancıklı, Z. A. (2022). Synthesis of new pyrimidine-triazole derivatives and investigation of their anticancer activities. Chemistry & Biodiversity, 19(8), e202200216. https://doi.org/10.1002/cbdv.202200216
  • Pandey, D. K., Devadoss, T., Modak, N., & Mahesh, R. (2016). Antidepressant & anxiolytic activities of N-(pyridin-3-yl) quinoxalin-2-carboxamide: A novel serotonin type 3 receptor antagonist in behavioural animal models. The Indian Journal of Medical Research, 144(4), 614–621. https://doi.org/10.4103/0971-5916.200893
  • Pearce, S. (2017). The importance of heterocyclic compounds in anticancer drug design. Drug Discovery World, 18, 66–70.
  • Pfeffer, C. M., & Singh, A. T. K. (2018). Apoptosis: A target for anticancer therapy. International Journal of Molecular Sciences, 19(2), 448. https://doi.org/10.3390/ijms19020448
  • Pommier, Y., Leo, E., Zhang, H., & Marchand, C. (2010). DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chemistry & Biology, 17(5), 421–433. https://doi.org/10.1016/j.chembiol.2010.04.012
  • Remiszewski, S. W., Sambucetti, L. C., Bair, K. W., Bontempo, J., Cesarz, D., Chandramouli, N., Chen, R., Cheung, M., Cornell-Kennon, S., Dean, K., Diamantidis, G., France, D., Green, M. A., Howell, K. L., Kashi, R., Kwon, P., Lassota, P., Martin, M. S., Mou, Y., … Atadja, P. (2003). N-Hydroxy-3-phenyl-2-propenamides as Novel Inhibitors of Human Histone Deacetylase with in Vivo Antitumor Activity: Discovery of (2E)-N-Hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]amino]methyl]phenyl]-2-propenamide (NVP-LAQ824). Journal of Medicinal Chemistry, 46(21), 4609–4624. https://doi.org/10.1021/jm030235w
  • Rodrigues, J. H D S., Ueda-Nakamura, T., Corrêa, A. G., Sangi, D. P., & Nakamura, C. V. (2014). A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi. PloS One, 9(1), e85706. https://doi.org/10.1371/journal.pone.0085706
  • Rubin, M. A., Maher, C. A., & Chinnaiyan, A. M. (2011). Common gene rearrangements in prostate cancer. Journal of Clinical Oncology, 29(27), 3659–3668. https://doi.org/10.1200/JCO.2011.35.1916
  • S., Hamad Elgazwy., & A.-S., Soliman, D. H. (2013). Design, synthesis and evaluation of 1,3,2 diazaphosphorin[4,5-b]quinoxaline-5,10-di-n-oxide derivatives as novel VEGFR-2 and SRC kinase inhibitors in the treatment of prostate cancer. The Open Conference Proceedings Journal, 4, 77–86. https://doi.org/10.2174/2210289201304010077
  • Salam, H. S., Tawfik, M. M., Elnagar, M. R., Mohammed, H. A., Zarka, M. A., & Awad, N. S. (2022). Potential apoptotic activities of Hylocereus undatus peel and pulp extracts in MCF-7 and Caco-2 cancer cell lines. Plants (Basel, Switzerland), 11(17), 2192. https://doi.org/10.3390/plants11172192
  • Salazar, J. H. (2014). Overview of urea and creatinine. Laboratory Medicine, 45(1), e19–e20. https://doi.org/10.1309/LM920SBNZPJRJGUT
  • Seth, A., & Watson, D. K. (2005). ETS transcription factors and their emerging roles in human cancer. European Journal of Cancer (Oxford, England: 1990), 41(16), 2462–2478. https://doi.org/10.1016/j.ejca.2005.08.013
  • Sri Ramya, P. V., Guntuku, L., Angapelly, S., Karri, S., Digwal, C. S., Babu, B. N., Naidu, V. G. M., & Kamal, A. (2018). Curcumin inspired 2-chloro/phenoxy quinoline analogues: Synthesis and biological evaluation as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters, 28(5), 892–898. https://doi.org/10.1016/j.bmcl.2018.01.070
  • Swift, L., Cutts, S., Nudelman, A., Levovich, I., Rephaeli, A., & Phillips, D. (2008). The cardio-protecting agent and topoisomerase II catalytic inhibitor sobuzoxane enhances doxorubicin-DNA adduct mediated cytotoxicity. Cancer Chemotherapy and Pharmacology, 61(5), 739–749. https://doi.org/10.1007/s00280-007-0528-2
  • Tang, X., He, J., Li, Q., Tang, X., Chen, M., Hao, G., Huai, Z., Huang, Y., & Xue, W. (2020). Discovery of 1,4-pentadien-3-one derivatives containing quinoxaline scaffolds as potential apoptosis inducers. Future Medicinal Chemistry, 12(16), 1505–1519. https://doi.org/10.4155/fmc-2019-0371
  • Tariq, S., Alam, O., & Amir, M. (2018). Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety. Bioorganic Chemistry, 76, 343–358. https://doi.org/10.1016/j.bioorg.2017.12.003
  • Tawfik, M. M., Eissa, N., Althobaiti, F., Fayad, E., & Abu Almaaty, A. H. (2021). Nomad Jellyfish Rhopilema nomadica venom induces apoptotic cell death and cell cycle arrest in human hepatocellular Carcinoma HepG2 cells. Molecules (Basel, Switzerland), 26(17), 5185. https://doi.org/10.3390/molecules26175185
  • Tomlins, S. A., Laxman, B., Dhanasekaran, S. M., Helgeson, B. E., Cao, X., Morris, D. S., Menon, A., Jing, X., Cao, Q., Han, B., Yu, J., Wang, L., Montie, J. E., Rubin, M. A., Pienta, K. J., Roulston, D., Shah, R. B., Varambally, S., Mehra, R., & Chinnaiyan, A. M. (2007). Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature, 448(7153), 595–599. https://doi.org/10.1038/nature06024
  • Tseng, C.-H., Chen, Y.-R., Tzeng, C.-C., Liu, W., Chou, C.-K., Chiu, C.-C., & Chen, Y.-L. (2016). Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents. European Journal of Medicinal Chemistry, 108, 258–273. https://doi.org/10.1016/j.ejmech.2015.11.031
  • Upadhyay, K. D., Dodia, N. M., Khunt, R. C., Chaniara, R. S., & Shah, A. K. (2019). Evaluation and in vivo efficacy study of pyrano[3,2-c]quinoline analogues as TNF-α inhibitors. Chemical Biology & Drug Design, 94(3), 1647–1655. https://doi.org/10.1111/cbdd.13566
  • Velidedeoglu, M., Kundaktepe, B. P., Aksan, H., & Uzun, H. (2021). Preoperative fibrinogen and hematological indexes in the differential diagnosis of idiopathic granulomatous mastitis and breast cancer. Medicina (Kaunas, Lithuania), 57(7), 698. https://doi.org/10.3390/medicina57070698
  • Willman, J. H., & Holden, J. A. (2000). Immunohistochemical staining for DNA topoisomerase II-alpha in benign, premalignant, and malignant lesions of the prostate. The Prostate, 42(4), 280–286. https://doi.org/10.1002/(sici)1097-0045(20000301)42:4
  • Wong, R. S. (2011). Apoptosis in cancer: From pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30(1), 87. https://doi.org/10.1186/1756-9966-30-87
  • Zaher, N. H., El-Hazek, R. M. M., El-Gazzar, M. G. M., El-Sabbagh, W. A., & Fadel, N. A. (2023). Novel imino-thiazoloquinoxaline derivatives against renal cell carcinoma: Less radiation-damaging approach. Medicinal Chemistry Research, 32(4), 764–776. https://doi.org/10.1007/s00044-023-03036-8
  • Zakzok, S. M., Alkaradawe, R. M., Mohammad, S. H., & Tawfik, M. M. (2021). Anti-proliferative and antioxidant activities of the edible crab Callinectes sapidus hepatopancreas and hemolymph extracts. Egyptian Journal of Aquatic Biology and Fisheries, 25(3), 531–550. https://doi.org/10.21608/ejabf.2021.179659
  • Zamudio-Vázquez, R., Ivanova, S., Moreno, M., Hernandez-Alvarez, M. I., Giralt, E., Bidon-Chanal, A., Zorzano, A., Albericio, F., & Tulla-Puche, J. (2015). A new quinoxaline-containing peptide induces apoptosis in cancer cells by autophagy modulation †Electronic supplementary information (ESI) available: Supplemental figures, experimental details and characterization data. See DOI:Click here for additional data file. Click here for additional data file. Click here for additional data file. Chemical Science, 6(8), 4537–4549. https://doi.org/10.1039/C5SC00125K
  • Zhang, J., Zhang, J., Hao, G., Xin, W., Yang, F., Zhu, M., & Zhou, H. (2019). Design, synthesis, and structure–activity relationship of 7-propanamide benzoxaboroles as potent anticancer agents. Journal of Medicinal Chemistry, 62(14), 6765–6784. https://doi.org/10.1021/acs.jmedchem.9b00736

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.