69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Amino acids and glycine derivatives differently affect refolding of mesophilic and thermophilic like α-amylases: implications in protein refolding and aggregation

, &
Received 03 Dec 2023, Accepted 02 Mar 2024, Published online: 14 Mar 2024

References

  • Ahmad, A., & Mishra, R. (2020). Different unfolding pathways of homologous alpha amylases from Bacillus licheniformis (BLA) and Bacillus amyloliquefaciens (BAA) in GdmCl and urea. International Journal of Biological Macromolecules, 159, 667–674. https://doi.org/10.1016/j.ijbiomac.2020.05.139
  • Ahmad, A., & Mishra, R. (2022). Differential effect of polyol and sugar osmolytes on the refolding of homologous alpha amylases: A comparative study. Biophysical Chemistry, 281, 106733. https://doi.org/10.1016/j.bpc.2021.106733
  • Ahmad, A., Mishra, R., & Rahamtullah. Structural and functional adaptation in extremophilic microbial α-amylases. Biophysical Reviews, 2 2022; 14:499–515. https://doi.org/10.1007/s12551-022-00931
  • Alibolandi, M., & Mirzahoseini, H. (2011). Chemical assistance in refolding of bacterial inclusion bodies. Biochemistry Research International, 2011, 631606–631607. https://doi.org/10.1155/2011/631607
  • Alikhajeh, J., Khajeh, K., Ranjbar, B., Naderi-Manesh, H., Lin, Y. H., Liu, E., Guan, H. H., Hsieh, Y. C., Chuankhayan, P., Huang, Y. C., Jeyaraman, J., Liu, M. Y., & Chen, C. J. (2010). Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution: Implications for thermal stability. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 66(Pt 2), 121–129. https://doi.org/10.1107/S1744309109051938
  • Anjum, F., Rishi, V., & Ahmad, F. (2000). Compatibility of osmolytes with Gibbs energy of stabilization of proteins. Biochimica et Biophysica Acta, 1476(1), 75–84. https://doi.org/10.1016/s0167-4838(99)00215-0
  • Arakawa, T., & Kita, Y. (2014). Multi-faceted arginine: Mechanism of the effects of arginine on protein. Current Protein & Peptide Science, 15(6), 608–620. https://doi.org/10.2174/138920371506140818113015
  • Arakawa, T., & Timasheff, S. N. (1983). Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Archives of Biochemistry and Biophysics, 224(1), 169–177. https://doi.org/10.1016/0003-9861(83)90201-1
  • Arakawa, T., & Timasheff, S. N. (1985). The stabilization of proteins by osmolytes. Biophysical Journal, 47(3), 411–414. https://doi.org/10.1016/S0006-3495(85)83932-1
  • Arakawa, T., Ejima, D., Tsumoto, K., Obeyama, N., Tanaka, Y., Kita, Y., & Timasheff, S. N. (2007). Suppression of protein interactions by arginine: A proposed mechanism of the arginine effects. Biophysical Chemistry, 127(1-2), 1–8. https://doi.org/10.1016/j.bpc.2006.12.007
  • Auton, M., Rösgen, J., Sinev, M., Holthauzen, L. M., & Bolen, D. W. (2011). Osmolyte effects on protein stability and solubility: A balancing act between backbone and side-chains. Biophysical Chemistry, 159(1), 90–99. https://doi.org/10.1016/j.bpc.2011.05.012
  • Batey, S., & Clarke, J. (2006). Apparent cooperativity in the folding of multidomain proteins depends on the relative rates of folding of the constituent domains. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18113–18118. https://doi.org/10.1073/pnas.0604580103
  • Baynes, B. M., & Trout, B. L. (2004). Rational design of solution additives for the prevention of protein aggregation. Biophysical Journal, 87(3), 1631–1639. https://doi.org/10.1529/biophysj.104.042473
  • Bernfeld, P. (1955). Amylase α and β. Methods in Enzymology, 1, 149–151. https://doi.org/10.1016/0076-6879(55)01021-5
  • Brom, J. A., Petrikis, R. G., & Pielak, G. J. (2016). How sugars protect dry protein structure. Biochemistry, 62(5), 1044–1052. https://doi.org/10.1021/acs.biochem.2c00692
  • Bruździak, P., Panuszko, A., & Stangret, J. (2013). Influence of osmolytes on protein and water structure: A step to understanding the mechanism of protein stabilization. Journal of Physical Chemistry. B, 117(39), 11502–11508. https://doi.org/10.1021/jp404780c
  • Chen, J. H., Chi, M. C., Lin, M. G., Lin, L. L., & Wang, T. F. (2015). Beneficial effect of sugar osmolytes on the refolding of guanidine hydrochloride-denatured trehalose-6-phosphate hydrolase from Bacillus licheniformis. BioMed Research International, 2015, 806847. https://doi.org/10.1155/2015/806847
  • Chen, J., Liu, Y., Li, X., Wang, Y., Ding, H., Ma, G., & Su, Z. (2009). Cooperative effects of urea and L-arginine on protein refolding. Protein Expression and Purification, 66(1), 82–90. https://doi.org/10.1016/j.pep.2009.02.004
  • Chen, J., Liu, Y., Wang, Y., Ding, H., & Su, Z. (2008). Different effects of L-arginine on protein refolding: Suppressing aggregates of hydrophobic interaction, not covalent binding. Biotechnology Progress, 24(6), 1365–1372. https://doi.org/10.1002/btpr.93
  • Das, N., Tarif, E., Dutta, A., & Sen, P. (2023). Associated water dynamics might be a key factor affecting protein stability in the crowded milieu. Journal of Physical Chemistry. B, 127(14), 3151–3163. https://doi.org/10.1021/acs.jpcb.2c09043
  • Dasgupta, M., & Kishore, N. (2017). Selective inhibition of aggregation/fibrillation of bovine serum albumin by osmolytes: mechanistic and energetics insights. PloS One, 12(2), e0172208. https://doi.org/10.1371/journal.pone.0172208
  • Eronina, T. B., Chebotareva, N. A., Bazhina, S. G., Makeeva, V. F., Kleymenov, S. Y., & Kurganov, B. I. (2009). Effect of proline on thermal inactivation, denaturation and aggregation of glycogen phosphorylase b from rabbit skeletal muscle. Biophysical Chemistry, 141(1), 66–74. https://doi.org/10.1016/j.bpc.2008.12.007
  • Eronina, T. B., Chebotareva, N. A., Roman, S. G., Kleymenov, S. Y., Makeeva, V. F., Poliansky, N. B., Muranov, K. O., & Kurganov, B. I. (2014). Thermal denaturation and aggregation of apoform of glycogen phosphorylase b. Effect of crowding agents and chaperones. Biopolymers, 101(5), 504–516. https://doi.org/10.1002/bip.22410
  • Eronina, T. B., Mikhaylova, V. V., Chebotareva, N. A., Shubin, V. V., Kleymenov, S. Y., & Kurganov, B. I. (2020). Effect of arginine on stability and aggregation of muscle glycogen phosphorylase b. International Journal of Biological Macromolecules, 165(Pt A), 365–374. https://doi.org/10.1016/j.ijbiomac.2020.09.101
  • Farber, P. J., & Mittermaier, A. (2008). Side chain burial and hydrophobic core packing in protein folding transition states. Protein Science: A Publication of the Protein Society, 17(4), 644–651. https://doi.org/10.1110/ps.073105408
  • Farooq, M. A., Ali, S., Hassan, A., Tahir, H. M., Mumtaz, S., & Mumtaz, S. (2021). Biosynthesis and industrial applications of α-amylase: A review. Archives of Microbiology, 203(4), 1281–1292. https://doi.org/10.1007/s00203-020-02128-y
  • Fitch, C. A., Platzer, G., Okon, M., Garcia-Moreno, B. E., & McIntosh, L. P. (2015). Arginine: Its pKa value revisited. Protein Science, 24(5), 752–761. https://doi.org/10.1002/pro.2647
  • Fitter, J., & Haber-Pohlmeier, S. (2004). Structural stability and unfolding properties of thermostable bacterial alpha-amylases: A comparative study of homologous enzymes. Biochemistry, 43(30), 9589–9599. https://doi.org/10.1021/bi0493362
  • Fitter, J., & Heberle, J. (2000). Structural equilibrium fluctuations in mesophilic and thermophilic alpha-amylase. Biophysical Journal, 79(3), 1629–1636. https://doi.org/10.1016/S0006-3495(00)76413-7
  • Flocco, M. M., & Mowbray, S. L. (1994). Planar stacking interactions of arginine and aromatic side-chains in proteins. Journal of Molecular Biology, 235(2), 709–717. https://doi.org/10.1006/jmbi.1994.1022
  • Gajardo-Parra, N. F., Akrofi-Mantey, H., Ascani, M., Cea-Klapp, E., Garrido, J. M., Sadowski, G., & Held, C. (2022). Osmolyte effect on enzymatic stability and reaction equilibrium of formate dehydrogenase. Physical Chemistry Chemical Physics, 24(45), 27930–27939. https://doi.org/10.1039/d2cp04011e
  • Ganguly, P., Bubák, D., Polák, J., Fagan, P., Dračínský, M., van der Vegt, N. F. A., Heyda, J., & Shea, J. E. (2022). Cosolvent exclusion drives protein stability in trimethylamine n-oxide and betaine solutions. Journal of Physical Chemistry Letters, 13(34), 7980–7986. https://doi.org/10.1021/acs.jpclett.2c01692
  • Gekko, K., & Timasheff, S. N. (1981). Mechanism of protein stabilization by glycerol: Preferential hydration in glycerol-water mixtures. Biochemistry, 20(16), 4667–4676. https://doi.org/10.1021/bi00519a023
  • Hamada, H., Arakawa, T., & Shiraki, K. (2009). Effect of additives on protein aggregation. Current Pharmaceutical Biotechnology, 10(4), 400–407. https://doi.org/10.2174/138920109788488941
  • Haskins, N., Mumo, A., Brown, P. H., Tuchman, M., Morizono, H., & Caldovic, L. (2016). Effect of arginine on oligomerization and stability of N-acetylglutamate synthase. Scientific Reports, 6(1), 38711. https://doi.org/10.1038/srep3871
  • Hevehan, D. L., & De Bernardez Clark, E. (1997). Oxidative renaturation of lysozyme at high concentrations. Biotechnology and Bioengineering, 54(3), 221–230. https://doi.org/10.1002/(SICI)1097-0290(19970505)54:3
  • Hofmann, M.,Winzer, M.,Weber, C., &Gieseler, H. (2016). Prediction of protein aggregation in high concentration protein solutions utilizing protein-protein interactions determined by low volume static light scattering. Journal of Pharmaceutical Sciences, 105(6), 1819–1828. https://doi.org/10.1016/j.xphs.2016.03.022
  • Ignatova, Z., & Gierasch, L. M. (2006). Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proceedings of the National Academy of Sciences of the USA, 103(36), 13357–13361. https://doi.org/10.1073/pnas.0603772103
  • Janeček, Š., & Gabriško, M. (2016). Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cellular and Molecular Life Sciences, 73(14), 2707–2725. https://doi.org/10.1007/s00018-016-2246-6
  • Janeček, Š., Svensson, B., & MacGregor, E. A. (2014). α-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cellular and Molecular Life Sciences, 71(7), 1149–1170. https://doi.org/10.1007/s00018-013-1388-z
  • Kaushik, J. K., & Bhat, R. (2003). Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. Journal of Biological Chemistry, 278(29), 26458–26465. https://doi.org/10.1074/jbc.M300815200
  • Khan, S. H., Ahmad, N., Ahmad, F., & Kumar, R. (2010). Naturally occurring organic osmolytes: from cell physiology to disease prevention. IUBMB Life, 62(12), 891–895. https://doi.org/10.1002/iub.406
  • Kumar, N., & Kishore, N. (2013). Structure and effect of sarcosine on water and urea by using molecular dynamics simulations: Implications in protein stabilization. Biophysical Chemistry, 171, 9–15. https://doi.org/10.1016/j.bpc.2012.11.004
  • Lilie, H., Schwarz, E., & Rudolph, R. (1998). Advances in refolding of proteins produced in E. coli. Current Opinion in Biotechnology, 9(5), 497–501. https://doi.org/10.1016/s0958-1669(98)80035-9
  • Machius, M., Wiegand, G., & Huber, R. (1995). Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 A resolution. Journal of Molecular Biology, 246(4), 545–559. https://doi.org/10.1006/jmbi.1994.0106
  • Meng, F., Park, Y., & Zhou, H. (2001). Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase. The International Journal of Biochemistry & Cell Biology, 33(7), 701–709. https://doi.org/10.1016/s1357-2725(01)00048-
  • Misra, P. P., & Kishore, N. (2012). Glycine betaine: A widely reported osmolyte induces differential and selective conformational stability and enhances aggregation in some proteins in the presence of surfactants. Biopolymers, 97(12), 933–949. https://doi.org/10.1002/bip.22110
  • Mitchell, J. B., Nandi, C. L., McDonald, I. K., Thornton, J. M., & Price, S. L. (1994). Amino/aromatic interactions in proteins: Is the evidence stacked against hydrogen bonding? Journal of Molecular Biology, 239(2), 315–331. https://doi.org/10.1006/jmbi.1994.1370
  • Movahedpour, A., Asadi, M., Khatami, S. H., Taheri-Anganeh, M., Adelipour, M., Shabaninejad, Z., Ahmadi, N., Irajie, C., & Mousavi, P. (2022). A brief overview on the application and sources of α-amylase and expression hosts properties in order to production of recombinant α-amylase. Biotechnology and Applied Biochemistry, 69(2), 650–659. https://doi.org/10.1002/bab.2140
  • Mukherjee, M., & Mondal, J. (2018). Heterogeneous Impacts of Protein-Stabilizing Osmolytes on Hydrophobic Interaction. Journal of Physical Chemistry. B, 122(27), 6922–6930. https://doi.org/10.1021/acs.jpcb.8b04654
  • Muthu, S. A., Sharma, R., Qureshi, A., Parvez, S., & Ahmad, B. (2023). Mechanistic insights into monomer level prevention of amyloid aggregation of lysozyme by glycyrrhizic acid. International Journal of Biological Macromolecules, 227, 884–895. https://doi.org/10.1016/j.ijbiomac.2022.12
  • Negi, K. S., Das, N., Khan, T., & Sen, P. (2023). Osmolyte induced protein stabilization: Modulation of associated water dynamics might be a key factor. Physical Chemistry Chemical Physics: PCCP, 25(47), 32602–32612. https://doi.org/10.1039/d3cp03357k
  • Ou, W. B., Park, Y. D., & Zhou, H. M. (2002). Effect of osmolytes as folding aids on creatine kinase refolding pathway. The International Journal of Biochemistry & Cell Biology, 34(2), 136–147. https://doi.org/10.1016/s1357-2725(01)00113-3
  • Pradeep, L., & Udgaonkar, J. B. (2004). Osmolytes induce structure in an early intermediate on the folding pathway of barstar. Journal of Biological Chemistry, 279(39), 40303–40313. https://doi.org/10.1074/jbc.M406323200
  • Saban, M., Tanyildizi, D., Özer, & Murat, E. (2005). Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochemistry, 40(7), 2291–2296. https://doi.org/10.1016/j.procbio.2004.06.018
  • Samuel, D., Kumar, T. K., Ganesh, G., Jayaraman, G., Yang, P. W., Chang, M. M., Trivedi, V. D., Wang, S. L., Hwang, K. C., Chang, D. K., & Yu, C. (2000). Proline inhibits aggregation during protein refolding. Protein Science: A Publication of the Protein Society, 9(2), 344–352. https://doi.org/10.1110/ps.9.2.344
  • Santoro, M. M., Liu, Y., Khan, S. M., Hou, L. X., & Bolen, D. W. (1992). Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry, 31(23), 5278–5283. https://doi.org/10.1021/bi00138a006
  • Schobert, B., & Tschesche, H. (1978). Unusual solution properties of proline and its interaction with proteins. Biochimica et Biophysica Acta, 541(2), 270–277. https://doi.org/10.1016/0304-4165(78)90400-2
  • Shabbir, S., Muslim, M., Muthu, S. A., Pissurlenkar, R. R. S., Fatima, S., Ali, A., Ahmad, A., Ahmad, M., & Ahmad, B. (2022). The cocrystal of 3-((4-(3-isocyanobenzyl) piperazine-1-yl) methyl) benzonitrile with 5-hydroxy isophthalic acid prevents protofibril formation of serum albumin. Journal of Biomolecular Structure & Dynamics, 40(1), 538–548. https://doi.org/10.1080/07391102.2020.1815585
  • Shah, D., & Shaikh, A. R. (2016). Interaction of arginine, lysine, and guanidine with surface residues of lysozyme: Implication to protein stability. Journal of Biomolecular Structure & Dynamics, 34(1), 104–114. https://doi.org/10.1080/07391102.2015.1013158
  • Shmueli, M. D., Levy-Kanfo, L., Haj, E., Schoenfeld, A. R., Gazit, E., & Segal, D. (2019). Arginine refolds, stabilizes, and restores function of mutant pVHL proteins in animal model of the VHL cancer syndrome. Oncogene, 38(7), 1038–1049. https://doi.org/10.1038/s41388-018-0491-x
  • Singh, K., Shandilya, M., Kundu, S., & Kayastha, A. M. (2015). Heat, Acid and Chemically Induced Unfolding Pathways, Conformational Stability and Structure-Function Relationship in Wheat α-Amylase. PloS One, 10(6), e0129203. https://doi.org/10.1371/journal.pone.0129203
  • Singhvi, P., Saneja, A., Srichandan, S., & Panda, A. K. (2020). Bacterial Inclusion Bodies: A Treasure Trove of Bioactive Proteins. Trends in Biotechnology, 38(5), 474–486. May https://doi.org/10.1016/j.tibtech.2019.12.011
  • Soleymani, B., Barzegari, E., Mansouri, K., Karami, K., Mohammadi, P., Kiani, S., Moasefi, N., Tabar, M. S., & Mostafaie, A. (2020). Heterologous expression, purification, and refolding of SRY protein: Role of L-arginine as analyzed by simulation and practical study. Molecular Biology Reports, 47(8), 5943–5951. https://doi.org/10.1007/s11033-020-05667-1
  • Stasiulewicz, M., Panuszko, A., Bruździak, P., & Stangret, J. (2022). Mechanism of Osmolyte Stabilization-Destabilization of Proteins: Experimental Evidence. Journal of Physical Chemistry. B, 126(16), 2990–2999. https://doi.org/10.1021/acs.jpcb.2c00281
  • Strucksberg, K. H., Rosenkranz, T., & Fitter, J. (2007). Reversible and irreversible unfolding of multi-domain proteins. Biochimica et Biophysica Acta, 1774(12), 1591–1603. https://doi.org/10.1016/j.bbapap.2007.09.005
  • Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J. S., & Arakawa, T. (2004). Role of arginine in protein refolding, solubilization, and purification. Biotechnology Progress, 20(5), 1301–1308. https://doi.org/10.1021/bp0498793
  • Vemula, S., Vemula, S., Dedaniya, A., & Ronda, S. R. (2016). In vitro refolding with simultaneous purification of recombinant human parathyroid hormone (rhPTH 1-34) from Escherichia coli directed by protein folding size exclusion chromatography (PF-SEC): Implication of solution additives and their role on aggregates and renaturation. Analytical and Bioanalytical Chemistry, 408(1), 217–229. https://doi.org/10.1007/s00216-015-9097-
  • Wang, L., Zhou, Q., Chen, H., Chu, Z., Lu, J., Zhang, Y., & Yang, S. (2007). Efficient solubilization, purification of recombinant extracellular alpha-amylase from pyrococcus furiosus expressed as inclusion bodies in Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 34(3), 187–192. https://doi.org/10.1007/s10295-006-0185-1
  • Wlodarczyk, S. R., Custódio, D., Pessoa, A., Jr., & Monteiro, G. (2018). Influence and effect of osmolytes in biopharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 131, 92–98. https://doi.org/10.1016/j.ejpb.2018.07.019
  • Xia, Y., Park, Y. D., Mu, H., Zhou, H. M., Wang, X. Y., & Meng, F. G. (2007). The protective effects of osmolytes on arginine kinase unfolding and aggregation. International Journal of Biological Macromolecules, 40(5), 437–443. https://doi.org/10.1016/j.ijbiomac.2006.10.004
  • Yamaguchi, H., & Miyazaki, M. (2014). Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules, 4(1), 235–251. https://doi.org/10.3390/biom401023
  • Yancey, P. H., & Somero, G. N. (1979). Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochemical Journal, 183(2), 317–323. https://doi.org/10.1042/bj1830317
  • Ye, Y. T., Zhang, H., Deng, J. L., Li, M. Z., & Chen, Z. X. (2022). L-Arginine inhibits the activity of α-amylase: Rapid kinetics, interaction and functional implications. Food Chemistry, 380, 131836. https://doi.org/10.1016/j.foodchem.2021.131836
  • Zhang, J., Frey, V., Corcoran, M., Zhang-van Enk, J., & Subramony, J. A. (2016). Influence of Arginine Salts on the Thermal Stability and Aggregation Kinetics of Monoclonal Antibody: Dominant Role of Anions. Molecular Pharmaceutics, 13(10), 3362–3369. https://doi.org/10.1021/acs.molpharmaceut.6b00255
  • Zhao, D., Liu, Y., Zhang, G., Zhang, C., Li, X., Wang, Q., Shi, H., & Su, Z. (2015). Interaction of arginine with protein during refolding process probed by amide H/D exchange mass spectrometry and isothermal titration calorimetry. Biochimica et Biophysica Acta, 1854(1), 39–45. https://doi.org/10.1016/j.bbapap.2014.10.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.