126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular insights into inhibiting effects of lignin on cellulase investigated by molecular dynamics simulation

, , , , , & show all
Received 16 Oct 2023, Accepted 05 Mar 2024, Published online: 18 Mar 2024

References

  • Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101
  • Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005
  • Aguilera-Segura, S. M., Di Renzo, F., & Mineva, T. (2020). Molecular insight into the cosolvent effect on lignin–cellulose adhesion. Langmuir: The ACS Journal of Surfaces and Colloids, 36(47), 14403–14416. https://doi.org/10.1021/acs.langmuir.0c02794
  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
  • Badazhkova, V. D., Savela, R., & Leino, R. (2022). Selective modification of hydroxyl groups in lignin model compounds by ruthenium-catalyzed transfer hydrogenation. Dalton Transactions (Cambridge, England: 2003), 51(17), 6587–6596. https://doi.org/10.1039/d2dt00267a
  • Bakan, A., Meireles, L. M., & Bahar, I. (2011). ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics (Oxford, England), 27(11), 1575–1577. https://doi.org/10.1093/bioinformatics/btr168
  • Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6, 141. https://doi.org/10.3389/fenrg.2018.00141
  • Bhatia, S. K., Jagtap, S. S., Bedekar, A. A., Bhatia, R. K., Patel, A. K., Pant, D., Rajesh Banu, J., Rao, C. V., Kim, Y.-G., & Yang, Y.-H. (2020). Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresource Technology, 300, 122724. https://doi.org/10.1016/j.biortech.2019.122724
  • Bitencourt-Ferreira, G., Pintro, V. O., & de Azevedo, W. F. (2019). Docking with AutoDock4. Docking Screens for Drug Discovery, 2053, 125–148. https://doi.org/10.1007/978-1-4939-9752-7_9
  • Capolupo, L., & Faraco, V. (2016). Green methods of lignocellulose pretreatment for biorefinery development. Applied Microbiology and Biotechnology, 100(22), 9451–9467. https://doi.org/10.1007/s00253-016-7884-y
  • Chen, J. (2017). Functional roles of magnesium binding to extracellular signal-regulated kinase 2 explored by molecular dynamics simulations and principal component analysis. Journal of Biomolecular Structure & Dynamics, 36(2), 351–361. https://doi.org/10.1080/07391102.2016.1277783
  • Chen, H., Fu, Y., Cui, C., Yu, S., Liu, S., Liu, Y., Liu, Y., Nie, G., Nie, S., Yao, S., & Yu, H. (2023). Construction of novel cellulase with high activity, great stability and excellent lignin-resistant for efficient enzymatic hydrolysis by hydrophilic and negatively charged modification. Industrial Crops and Products, 191, 115910. https://doi.org/10.1016/j.indcrop.2022.115910
  • Cheng, Y.-S., Ko, T.-P., Wu, T.-H., Ma, Y., Huang, C.-H., Lai, H.-L., Wang, A. H.-J., Liu, J.-R., & Guo, R.-T. (2011). Crystal structure and substrate-binding mode of cellulase 12A from Thermotoga maritima. Proteins, 79(4), 1193–1204. https://doi.org/10.1002/prot.22953
  • Ciesielski, P. N., Pecha, M. B., Lattanzi, A. M., Bharadwaj, V. S., Crowley, M. F., Bu, L., Vermaas, J. V., Steirer, K. X., & Crowley, M. F. (2020). Advances in multiscale modeling of lignocellulosic biomass. ACS Sustainable Chemistry & Engineering, 8(9), 3512–3531. https://doi.org/10.1021/acssuschemeng.9b07415
  • Cui, C., Yan, C., Wang, A., Chen, C., Chen, D., Liu, S., Li, L., Wu, Q., Liu, Y., Liu, Y., Nie, G., Jiang, X., Nie, S., Yao, S., & Yu, H. (2023). Understanding the inhibition mechanism of lignin adsorption to cellulase in terms of changes in composition and conformation of free enzymes. Sustainability, 15(7), 6057. https://doi.org/10.3390/su15076057
  • Dellon, L. D., Yanez, A. J., Li, W., Mabon, R., & Broadbelt, L. J. (2017). Computational generation of lignin libraries from diverse biomass sources. Energy & Fuels, 31(8), 8263–8274. https://doi.org/10.1021/acs.energyfuels.7b01150
  • Djajadi, D. T., Pihlajaniemi, V., Rahikainen, J., Kruus, K., & Meyer, A. S. (2018). Cellulases adsorb reversibly on biomass lignin. Biotechnology and Bioengineering, 115(12), 2869–2880. https://doi.org/10.1002/bit.26820
  • Dos Santos, A. C., Ximenes, E., Kim, Y., & Ladisch, M. R. (2019). Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends in Biotechnology, 37(5), 518–531. https://doi.org/10.1016/j.tibtech.2018.10.010
  • Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(3), 353–364. https://doi.org/10.1016/S0141-0229(02)00134-5
  • Fodil Cherif, M., Trache, D., Brosse, N., Benaliouche, F., & Tarchoun, A. F. (2020). Comparison of the physicochemical properties and thermal stability of organosolv and kraft lignins from hardwood and softwood biomass for their potential valorization. Waste and Biomass Valorization, 11(12), 6541–6553. https://doi.org/10.1007/s12649-020-00955-0
  • Fu, N., Li, J., Wang, M., Ren, L., & Luo, Y. (2020). Genes identification, molecular docking and dynamics simulation analysis of laccases from amylostereum areolatum provides molecular basis of laccase bound to lignin. International Journal of Molecular Sciences, 21(22), 8845. https://doi.org/10.3390/ijms21228845
  • Hodgson, K. T., & Berg, J. C. (1988). The effect of surfactants on wicking flow in fiber networks. Journal of Colloid and Interface Science, 121, 22–31.
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hu, F., Jung, S., & Ragauskas, A. (2012). Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, 117, 7–12. https://doi.org/10.1016/j.biortech.2012.04.037
  • Huang, C., Jiang, X., Shen, X., Hu, J., Tang, W., Wu, X., Ragauskas, A., Jameel, H., Meng, X., & Yong, Q. (2022). Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renewable and Sustainable Energy Reviews, 154, 111822. https://doi.org/10.1016/j.rser.2021.111822
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Ko, J. K., Ximenes, E., Kim, Y., & Ladisch, M. R. (2014). Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnology and Bioengineering, 112(3), 447–456. https://doi.org/10.1002/bit.25359
  • Lai, C., Jia, Y., Yang, C., Chen, L., Shi, H., & Yong, Q. (2020). Incorporating Lignin into Polyethylene Glycol Enhanced Its Performance for Promoting Enzymatic Hydrolysis of Hardwood. ACS Sustainable Chemistry & Engineering, 8(4), 1797–1804. https://doi.org/10.1021/acssuschemeng.9b05724
  • Lawoko, M., Henriksson, G., & Gellerstedt, G. (2005). Structural differences between the lignin − carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules, 6(6), 3467–3473. https://doi.org/10.1021/bm058014q
  • Le Costaouëc, T., Pakarinen, A., Várnai, A., Puranen, T., & Viikari, L. (2013). The role of carbohydrate binding module (CBM) at high substrate consistency: Comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresource Technology, 143, 196–203. https://doi.org/10.1016/j.biortech.2013.05.079
  • Lee, T.-S., Allen, B. K., Giese, T. J., Guo, Z., Li, P., Lin, C., McGee, T. D., Pearlman, D. A., Radak, B. K., Tao, Y., Tsai, H.-C., Xu, H., Sherman, W., & York, D. M. (2020). Alchemical binding free energy calculations in AMBER20: Advances and best practices for drug discovery. Journal of Chemical Information and Modeling, 60(11), 5595–5623. https://doi.org/10.1021/acs.jcim.0c00613
  • Leimkuhler, B., Noorizadeh, E., & Penrose, O. (2011). Comparing the efficiencies of stochastic isothermal molecular dynamics methods. Journal of Statistical Physics, 143(5), 921–942. https://doi.org/10.1007/s10955-011-0210-2
  • Lian, P., Guo, H.-B., Smith, J. C., Wei, D.-Q., & Guo, H. (2014). Catalytic mechanism and origin of high activity of cellulase TmCel12A at high temperature: A quantum mechanical/molecular mechanical study. Cellulose, 21(2), 937–949. https://doi.org/10.1007/s10570-013-0011-7
  • Lian, P., Yuan, C., Xu, Q., & Fu, W. (2016). Thermostability mechanism for the hyperthermophilicity of extremophile cellulase TmCel12A: Implied from molecular dynamics simulation. The Journal of Physical Chemistry. B, 120(30), 7346–7352. https://doi.org/10.1021/acs.jpcb.6b03782
  • Li, M., Jiang, B., Wu, W., Wu, S., Yang, Y., Song, J., Ahmad, M., & Jin, Y. (2022). Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. International Journal of Biological Macromolecules, 195, 274–286. https://doi.org/10.1016/j.ijbiomac.2021.11.188
  • Li, M., Yi, L., Bin, L., Zhang, Q., Song, J., Jiang, H., Chen, C., Wang, S., & Min, D. (2020). Comparison of nonproductive adsorption of cellulase onto lignin isolated from pretreated lignocellulose. Cellulose, 27(14), 7911–7927. https://doi.org/10.1007/s10570-020-03357-6
  • Li, X., & Zheng, Y. (2017). Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 35(4), 466–489. https://doi.org/10.1016/j.biotechadv.2017.03.010
  • Lindner, B., Petridis, L., Schulz, R., & Smith, J. C. (2013). Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics simulation. Biomacromolecules, 14(10), 3390–3398. https://doi.org/10.1021/bm400442n
  • Lin, Y., Pan, D., Li, J., Zhang, L., & Shao, X. (2017). Application of Berendsen barostat in dissipative particle dynamics for nonequilibrium dynamic simulation. The Journal of Chemical Physics, 146(12), 124108. https://doi.org/10.1063/1.4978807
  • Lu, X., Wang, C., Li, X., Zhao, J., & Zhao, X. (2017). Studying nonproductive adsorption ability and binding approach of cellobiohydrolase to lignin during bioconversion of lignocellulose. Energy & Fuels, 31(12), 14393–14400. https://doi.org/10.1021/acs.energyfuels.7b02427
  • Lu, X., Zheng, X., Li, X., & Zhao, J. (2016). Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. Biotechnology for Biofuels, 9(1), 118. https://doi.org/10.1186/s13068-016-0531-0
  • Madland, E., Crasson, O., Vandevenne, M., Sørlie, M., & Aachmann, F. L. (2019). NMR and fluorescence spectroscopies reveal the preorganized binding site in family 14 carbohydrate-binding module from human chitotriosidase. ACS Omega, 4(26), 21975–21984. https://doi.org/10.1021/acsomega.9b03043
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(1), 37–46. https://doi.org/10.1016/s0960-8524(01)00118-3
  • Mhlongo, S. I., den Haan, R., Viljoen-Bloom, M., & van Zyl, W. H. (2015). Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance. Enzyme and Microbial Technology, 81, 16–22. https://doi.org/10.1016/j.enzmictec.2015.07.005
  • Mokhtari, M., Eslamibidgoli, M. J., & Eikerling, M. H. (2020). Electronic structure and conformational properties of polybenzimidazole-based ionenes—a density functional theory investigation. ACS Omega, 5(3), 1472–1478. https://doi.org/10.1021/acsomega.9b03116
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mou, H., Wu, X., Huang, J., Liu, Y., & Fan, H. (2021). Eucalyptus lignin modification for dynamic adsorption with lignocellulose-degradation enzymes dependent on pH values. Industrial Crops and Products, 169, 113650. https://doi.org/10.1016/j.indcrop.2021.113650
  • Naqvi, A. A. T., Jairajpuri, D. S., Hussain, A., Hasan, G. M., Alajmi, M. F., & Hassan, M. I. (2020). Impact of glioblastoma multiforme associated mutations on the structure and function of MAP/microtubule affinity regulating kinase 4. Journal of Biomolecular Structure & Dynamics, 39(5), 1781–1794. https://doi.org/10.1080/07391102.2020.1738959
  • Narron, R. H., Chang, H-M., Jameel, H., & Park, S. (2017). Soluble lignin recovered from biorefinery pretreatment hydrolyzate characterized by lignin–carbohydrate complexes. ACS Sustainable Chemistry & Engineering, 5(11), 10763–10771. https://doi.org/10.1021/acssuschemeng.7b02716
  • Pareek, N., Gillgren, T., & Jönsson, L. J. (2013). Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technology, 148, 70–77. https://doi.org/10.1016/j.biortech.2013.08.121
  • Petridis, L., & Smith, J. C. (2018). Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nature Reviews Chemistry, 2(11), 382–389. https://doi.org/10.1038/s41570-018-0050-6
  • Plazinska, A., & Plazinski, W. (2021). Comparison of carbohydrate force fields in molecular dynamics simulations of protein–carbohydrate complexes. Journal of Chemical Theory and Computation, 17(4), 2575–2585. https://doi.org/10.1021/acs.jctc.1c00071
  • Qin, L., Li, W.-C., Liu, L., Zhu, J.-Q., Li, X., Li, B.-Z., & Yuan, Y.-J. (2016). Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnology for Biofuels, 9(1), 70. https://doi.org/10.1186/s13068-016-0485-2
  • Robert, C., Rizzo, S. T., & Kuntz, I. D. (2004). A molecular basis for the selectivity of thiadiazole urea inhibitors with stromelysin 1 and gelatinase A from generalized born molecular dynamics simulations. Journal of Medicinal Chemistry. 47, 3065–3074. https://doi.org/10.1021/acschemneuro.9b00348
  • Sahoo, K., Sahoo, R. K., Gaur, M., & Subudhi, E. (2020). Cellulolytic thermophilic microorganisms in white biotechnology: A review. Folia Microbiologica, 65(1), 25–43. https://doi.org/10.1007/s12223-019-00710-6
  • Saini, J. K., Patel, A. K., Adsul, M., & Singhania, R. R. (2016). Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass. Renewable Energy. 98, 29–42. https://doi.org/10.1016/j.renene.2016.03.089
  • Schepers, B., & Gohlke, H. (2020). AMBER-DYES in AMBER: Implementation of fluorophore and linker parameters into AmberTools. The Journal of Chemical Physics, 152(22), 221103. https://doi.org/10.1063/5.0007630
  • Schmatz, A. A., Salazar-Bryam, A. M., Contiero, J., Sant’Anna, C., & Brienzo, M. (2020). Pseudo-lignin content decreased with hemicellulose and lignin removal, improving cellulose accessibility, and enzymatic digestibility. BioEnergy Research, 14(1), 106–121. https://doi.org/10.1007/s12155-020-10187-8
  • Soni, S. K., Sharma, A., & Soni, R. (2018). Cellulases: Role in lignocellulosic biomass utilization. Methods in Molecular Biology (Clifton, N.J.), 1796, 3–23. https://doi.org/10.1007/978-1-4939-7877-9_1
  • Sun, S., Huang, Y., Sun, R., & Tu, M. (2016). The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chemistry, 18(15), 4276–4286. https://doi.org/10.1039/C6GC00685J
  • Sun, S.-C., Sun, D., Wang, H.-M., Li, H.-Y., Cao, X.-F., Sun, S.-N., & Yuan, T.-Q. (2021). Effect of integrated treatment on improving the enzymatic digestibility of poplar and the structural features of isolated hemicelluloses. Carbohydrate Polymers, 252, 117164. https://doi.org/10.1016/j.carbpol.2020.117164
  • Tang, W., Wu, X., Huang, C., Ling, Z., Lai, C., & Yong, Q. (2021). Comprehensive understanding of the effects of metallic cations on enzymatic hydrolysis of humic acid-pretreated waste wheat straw. Biotechnology for Biofuels, 14(1), 25. https://doi.org/10.1186/s13068-021-01874-5
  • Vermaas, J. V., Petridis, L., Qi, X., Schulz, R., Lindner, B., & Smith, J. C. (2015). Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnology for Biofuels, 8(1), 217. https://doi.org/10.1186/s13068-015-0379-8
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wu, J., Chandra, R. P., Takada, M., Liu, L.-Y., Renneckar, S., Kim, K. H., Kim, C. S., & Saddler, J. N. (2020). Enhancing enzyme-mediated cellulose hydrolysis by incorporating acid groups onto the lignin during biomass pretreatment. Frontiers in Bioengineering and Biotechnology, 8, 608835. https://doi.org/10.3389/fbioe.2020.608835
  • Wu, W., Li, P., Huang, L., Wei, Y., Li, J., Zhang, L., & Jin, Y. (2023). The role of lignin structure on cellulase adsorption and enzymatic hydrolysis. Biomass, 3(1), 96–107. https://doi.org/10.3390/biomass3010007
  • Ximenes, E., Kim, Y., Mosier, N., Dien, B., & Ladisch, M. (2010). Inhibition of cellulases by phenols. Enzyme and Microbial Technology, 46(3-4), 170–176. https://doi.org/10.1016/j.enzmictec.2009.11.001
  • Ximenes, E., Kim, Y., Mosier, N., Dien, B., & Ladisch, M. (2011). Deactivation of cellulases by phenols. Enzyme and Microbial Technology, 48(1), 54–60. https://doi.org/10.1016/j.enzmictec.2010.09.006
  • Xu, L., Wang, J., Zhang, A., Pang, Y., Yang, D., Lou, H., & Qiu, X. (2023). Unveiling the role of long-range and short-range forces in the non-productive adsorption between lignin and cellulases at different temperatures. Journal of Colloid and Interface Science, 647, 318–330. https://doi.org/10.1016/j.jcis.2023.05.152
  • Yadav, S., Pandey, A. K., & Dubey, S. K. (2021). Molecular modeling, docking and simulation dynamics of β-glucosidase reveals high-efficiency, thermo-stable, glucose tolerant enzyme in Paenibacillus lautus BHU3 strain. International Journal of Biological Macromolecules, 168, 371–382. https://doi.org/10.1016/j.ijbiomac.2020.12.059
  • Yangsu, Z., Linfeng, Y., Wenjuan, W., Zhiguo, W., & Yongcan, J. (2016). Complete dissolution of ball-milled masson pine using an aqueous sodium hydroxide solvent. BioResources, 11, 6017–6025.
  • Yao, L., Yang, H., Yoo, C. G., Chen, C., Meng, X., Dai, J., Yang, C., Yu, J., Ragauskas, A. J., & Chen, X. (2021). A mechanistic study of cellulase adsorption onto lignin. Green Chemistry, 23(1), 333–339. https://doi.org/10.1039/D0GC02463E
  • Yarbrough, J. M., Mittal, A., Mansfield, E., Taylor, L. E., Hobdey, S. E., Sammond, D. W., Bomble, Y. J., Crowley, M. F., Decker, S. R., Himmel, M. E., & Vinzant, T. B. (2015). New perspective on glycoside hydrolase binding to lignin from pretreated corn stover. Biotechnology for Biofuels, 8(1), 214. https://doi.org/10.1186/s13068-015-0397-6
  • Ying, W., Shi, Z., Yang, H., Xu, G., Zheng, Z., & Yang, J. (2018). Effect of alkaline lignin modification on cellulase–lignin interactions and enzymatic saccharification yield. Biotechnology for Biofuels, 11(1), 214. https://doi.org/10.1186/s13068-018-1217-6
  • Yoo, C. G., Meng, X., Pu, Y., & Ragauskas, A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 301, 122784. https://doi.org/10.1016/j.biortech.2020.122784
  • Yuan, Y., Jiang, B., Chen, H., Wu, W., Wu, S., Jin, Y., & Xiao, H. (2021). Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnology for Biofuels, 14(1), 205. https://doi.org/10.1186/s13068-021-02054-1
  • Zhang, M., Wu, S.-C., Zhou, W., & Xu, B. (2012). Imaging and measuring single-molecule interaction between a carbohydrate-binding module and natural plant cell wall cellulose. The Journal of Physical Chemistry. B, 116(33), 9949–9956. https://doi.org/10.1021/jp304686q
  • Zhao, X., Meng, X., Ragauskas, A. J., Lai, C., Ling, Z., Huang, C., & Yong, Q. (2022). Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnology Advances, 54, 107830. https://doi.org/10.1016/j.biotechadv.2021.107830
  • Zheng, W., Lan, T., Li, H., Yue, G., & Zhou, H. (2020). Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate-enzyme adsorption. Biotechnology for Biofuels, 13(1), 19. https://doi.org/10.1186/s13068-020-1659-5
  • Zheng, P., Xiang, L., Chang, J., Lin, Q., Xie, L., Lan, T., Liu, J., Gong, Z., Tang, T., Shuai, L., Luo, X., Chen, N., & Zeng, H. (2021). Nanomechanics of lignin–cellulase interactions in aqueous solutions. Biomacromolecules, 22(5), 2033–2042. https://doi.org/10.1021/acs.biomac.1c00140
  • Zhou, Z., & Li, Y. (2009). Molecular dynamics simulation of S100B protein to explore ligand blockage of the interaction with p53 protein. Journal of Computer-Aided Molecular Design, 23(10), 705–714. https://doi.org/10.1007/s10822-009-9294-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.