96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced sensing of bacteria biomarkers by ZnO and graphene oxide decorated PEDOT film

, , , , &
Received 22 Aug 2023, Accepted 05 Mar 2024, Published online: 18 Mar 2024

References

  • Aarabi, M., Salehi, A., & Kashaninia, A. (2022). Calculated characterisation of a sensitive gas sensor based on PEDOT:PSS. IET Circuits, Devices & Systems, 16(6), 461–470. https://doi.org/10.1049/cds2.12119
  • Adekoya, G. J., Folorunso, O., Adekoya, O. C., Hamam, Y., Sadiku, E. R., & Ray, S. S. (2023). Adsorption of EDOT on graphene: DFT and MC studies. AIP Conference Proceedings, 2607, 070013.
  • Adekunle, A. S., Agboola, B. O., Pillay, J., & Ozoemena, K. I. (2010). Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform. Sensors and Actuators B: Chemical, 148(1), 93–102. https://doi.org/10.1016/j.snb.2010.03.088
  • Ait Elmachkouri, Y., Irrou, E., Thiruvalluvar, A. A., Anouar, E. H., Varadharajan, V., Ouachtak, H., Mague, J. T., Sebbar, N. K., Essassi, E. M., & Labd Taha, M. (2023). Synthesis, crystal structure, spectroscopic characterization, DFT calculations, Hirshfeld surface analysis, molecular docking, and molecular dynamics simulation investigations of novel pyrazolopyranopyrimidine derivatives. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2023.2268187
  • Al-Asbahi, B. A., Abdelkader, M., Alkashef, I. M., Ahmed, A. A. A., Ragab, H. S., & El-Shamy, A. G. (2022). Embedding of zinc peroxide (ZnO2) nano-particles into PEDOT:PSS for fabricating a new PEDOT:PSS/ZnO2 system with promising thermoelectric functions. Materials Science in Semiconductor Processing, 146, 106678. https://doi.org/10.1016/j.mssp.2022.106678
  • Alavi, M., Li, L., & Nokhodchi, A. (2023). Metal, metal oxide and polymeric nanoformulations for the inhibition of bacterial quorum sensing. Drug Discovery Today, 28(1), 103392. https://doi.org/10.1016/j.drudis.2022.103392
  • Bader, R. F. W. (1985). Atoms in molecules. Accounts of Chemical Research, 18(1), 9–15. https://doi.org/10.1021/ar00109a003
  • Bader, R. F. W. (1990). Atoms in molecules. A quantum theory. Oxford University Press.
  • Bader, R. F. W. (1991). A quantum theory of molecular structure and its applications. Chemical Reviews, 91(5), 893–928. https://doi.org/10.1021/cr00005a013
  • Bag, A., & Lee, N.-E. (2019). Gas sensing with heterostructures based on two-dimensional nanostructured materials: A review. Journal of Materials Chemistry C, 7(43), 13367–13383. https://doi.org/10.1039/C9TC04132J
  • Beduk, T., Bihar, E., Surya, S. G., Castillo, A. N., Inal, S., & Salama, K. N. (2020). A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor. Sensors and Actuators B: Chemical, 306, 127539. https://doi.org/10.1016/j.snb.2019.127539
  • Billot, R., Plener, L., Jacquet, P., Elias, M., Chabrière, E., & Daudé, D. (2020). Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control. The Journal of Biological Chemistry, 295(37), 12993–13007. https://doi.org/10.1074/jbc.REV120.013531
  • Boys, S., & Bernardi, F. (2002). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics. 19(4), 553–566. https://doi.org/10.1080/00268977000101561
  • Capatina, D., Lupoi, T., Feier, B., Blidar, A., Hosu, O., Tertis, M., Olah, D., Cristea, C., & Oprean, R. (2022). Label-free electrochemical aptasensor for the detection of the 3-O-C12-HSL quorum-sensing molecule in Pseudomonas aeruginosa. Biosensors, 12(7), 440. https://doi.org/10.3390/bios12070440
  • Effeti, I. I., Majoumo-Mbe, F., Louis, H., Nfor E. N., Akongwi, M., Unimuke, T. O., Pembere, A. M. S., & Offiong O, E. (2023). Modeling of photofunctional transition metals (Mn, Re, Ir) complexes towards the effective detection of uric acid (UA) as biomarker for kidney dysfunction. Journal of Photochemistry and Photobiology, A: Chemistry, 444, 114942. https://doi.org/10.1016/j.jphotochem.2023.114942
  • Fedorova, I. V., & Safonova, L. P. (2020). Ion pair structures and hydrogen bonding in RnNH4-n alkylammonium ionic liquids with hydrogen sulfate and mesylate anions by DFT computations. The Journal of Physical Chemistry. A, 124(16), 3170–3179. https://doi.org/10.1021/acs.jpca.0c01282
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2016). Gaussian 16 Rev. C.01. Wallingford, CT: Gaussian, Inc.
  • Fu, B., Xing, Y., Gong, C., & Zhao, H. (2022). Sensitive detection of quorum signalling molecules (N-acyl homoserine lactones) in activated sludge based on surface molecularly imprinted polymers on CQDs@MIL-101. Environmental Science: Water Research & Technology, 8(6), 1211–1222. https://doi.org/10.1039/D2EW00059H
  • Glendening, E. D., Landis, C. R., & Weinhold, F. (2019). NBO 7.0: New vistas in localized and delocalized chemical bonding theory. Journal of Computational Chemistry, 40(25), 2234–2241. https://doi.org/10.1002/jcc.25873
  • Güner, A., Çevik, E., Şenel, M., & Alpsoy, L. (2017). An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chemistry, 229, 358–365. https://doi.org/10.1016/j.foodchem.2017.02.083
  • Hamdi, S., Smaoui, H., Guermazi, S., Leroy, G., & Duponchel, B. (2022). Enhancing the structural, optical and electrical conductivity properties of ZnO nanopowders through Dy doping. Inorganic Chemistry Communications, 144, 109819. https://doi.org/10.1016/j.inoche.2022.109819
  • Hamid Kargari, S., Ahour, F., & Mahmoudian, M. (2023). An electrochemical sensor for the detection of arsenic using nanocomposite-modified electrode. Scientific Reports, 13(1), 8816. https://doi.org/10.1038/s41598-023-36103-6
  • Hasani, A., Sharifi Dehsari, H., Asghari Lafmejani, M., Salehi, A., Afshar Taromi, F., Asadi, K., & Kim, S. Y. (2018). Ammonia‐sensing using a composite of graphene oxide and conducting polymer. Physica Status Solidi (RRL)–Rapid Research Letters, 12(5), 1800037.
  • Hou, L., Anichini, C., Samorì, P., Criado, A., & Prato, M. (2022). 2D Van der Waals heterostructures for chemical sensing. Advanced Functional Materials, 32(49), 2207065. https://doi.org/10.1002/adfm.202207065
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jiang, D., Liu, Y., Jiang, H., Rao, S., Fang, W., Wu, M., Yuan, L., & Fang, W. (2018). A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish. Biosensors & Bioelectronics, 102, 396–402. https://doi.org/10.1016/j.bios.2017.11.040
  • Khan, M. I., Majid, A., Ashraf, N., & Ullah, A. (2020). A DFT study on borophene/boron nitride interface for application as an electrode. Physical Chemistry Chemical Physics, 22, 3304–3313. https://doi.org/10.1039/C9CP06626H
  • Ladhe, R., Gurav, K., Pawar, S., Kim, J., & Sankapal, B. (2012). P-PEDOT:PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperature. Journal of Alloys and Compounds, 515, 80–85. https://doi.org/10.1016/j.jallcom.2011.11.076
  • Louis, H., Charlie, D. E., Amodu, I. O., Benjamin, I., Gber, T. E., Agwamba, E. C., & Adeyinka, A. S. (2022). Probing the reactions of thiourea (CH4N2S) with metals (X = Au, Hf, Hg, Ir, Os, W, Pt, and Re) anchored on fullerene surfaces (C59X). ACS Omega, 7(39), 35118–35135. https://doi.org/10.1021/acsomega.2c04044
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Mirzaei, A., Bharath, S. P., Kim, J., Pawar, K. K., Kim, H. W., & Kim, S. S. (2023). N-doped graphene and its derivatives as resistive gas sensors: An overview. Chemosensors, 11(6), 334. https://doi.org/10.3390/chemosensors11060334
  • Mukherjee, D., Sil, M., Goswami, A., Lahiri, D., & Nag, M. (2023). Effectiveness of metal and metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Journal of Basic Microbiology, 63(9), 971–985. https://doi.org/10.1002/jobm.202300013
  • Özcan, Ş. M., Sesal, N. C., Şener, M. K., & Koca, A. (2019). An alternative strategy to detect bacterial contamination in milk and water: A newly designed electrochemical biosensor. European Food Research and Technology, 246(6), 1317–1324. https://doi.org/10.1007/s00217-020-03491-2
  • Pasupuleti, K. S., Reddeppa, M., Nam, D.-J., Bak, N.-H., Peta, K. R., Cho, H. D., Kim, S.-G., & Kim, M.-D. (2021). Boosting of NO2 gas sensing performances using GO-PEDOT: PSS nanocomposite chemical interface coated on langasite-based surface acoustic wave sensor. Sensors and Actuators B: Chemical, 344, 130267. https://doi.org/10.1016/j.snb.2021.130267
  • Peintinger, M. F., Oliveira, D. V., & Bredow, T. (2013). Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. Journal of Computational Chemistry, 34(6), 451–459. https://doi.org/10.1002/jcc.23153
  • Rahman, H. A., Rafi, M., Putra, B. R., & Wahyuni, W. T. (2023). Electrochemical sensors based on a composite of electrochemically reduced graphene oxide and PEDOT:PSS for hydrazine detection. ACS Omega, 8(3), 3258–3269. https://doi.org/10.1021/acsomega.2c06791
  • Roopashree, B., Mahesh, B., Ramu, R., Rekha, N. D., Manjula, S. N., Preethi, G., & Gayathri, V. (2023). An insight into the cytotoxic, antimicrobial, antioxidant, and biocontrol perspective of novel Iron(III) complexes of substituted benzimidazoles: Inhibition kinetics and molecular simulations. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2023.2263569
  • Shahi, K., Singh, R. S., Singh, N. P., Aleksandrova, M., & Singh, A. K. (2019). Synthesis and characterization of PEDOT:PSS/ZnO nanowires heterojunction on ITO coated plastic substrate for light-emitting diodes. Materials Today: Proceedings, 15, 394–399. https://doi.org/10.1016/j.matpr.2019.04.099
  • Singh, A., & Yadav, B. C. (2023). Green synthesized ZnO/NiO heterostructures based quick responsive LPG sensor for the detection of below LEL with DFT calculations. Results in Surfaces and Interfaces, 11, 100103. https://doi.org/10.1016/j.rsurfi.2023.100103
  • Tseng, K., Hsiao, Y., Jen, C., Chang, T., & Wang, H. (2020). Cu2O/PEDOT:PSS/ZnO nanocomposite material biosensor for esophageal cancer detection. Sensors, 20(9), 2455. https://doi.org/10.3390/s20092455
  • Udowo, V. M., Yan, M., Liu, F., & Han, E. (2023a). Effect of redox switch, coupling, and continuous polarization on the anti-corrosion properties of PEDOT film in NaCl solution. Coatings, 13(5), 944. https://doi.org/10.3390/coatings13050944
  • Udowo, V. M., Yan, M., Liu, F., Okafor, P. C., & Hitler, L. (2023b). Computational and experimental study of the electronic and chemical changes of graphene oxide doped PEDOT in aqueous solution. Journal of Materials Science, 58(34), 13605–13620. https://doi.org/10.1007/s10853-023-08865-x
  • Vasudevan, S., Srinivasan, P., Rayappan, J. B. B., & Solomon, A. P. (2020). A photoluminescence biosensor for the detection of N-acyl homoserine lactone using cysteamine functionalized ZnO nanoparticles for the early diagnosis of urinary tract infections. Journal of Materials Chemistry. B, 8(19), 4228–4236. https://doi.org/10.1039/c9tb02243k
  • Wang, M., Zhai, S., Ye, Z., He, L., Peng, D., Feng, X., Yang, Y., Fang, S., Zhang, H., & Zhang, Z. (2015). An electrochemical aptasensor based on a TiO2/three-dimensional reduced graphene oxide/PPy nanocomposite for the sensitive detection of lysozyme. Dalton Transactions, 44(14), 6473–6479. https://doi.org/10.1039/c5dt00168d
  • Xiao, Y., Li, H., Wang, C., Pan, S., He, J., Liu, A., Wang, J., Sun, P., Liu, F., & Lu, G. (2023). Room temperature wearable gas sensors for fabrication and applications. Advanced Sensor Research, 3(3), 2300035. https://doi.org/10.1002/adsr.202300035
  • Zou, J., Wu, S., Liu, Y., Sun, Y., Cao, Y., Hsu, J.-P., Wee, A. T. S., & Jiang, J. (2018). An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon, 130, 652–663. https://doi.org/10.1016/j.carbon.2018.01.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.