88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electric field induced the changes in structure and function of human transforming growth factor beta receptor type I: from molecular dynamics to docking

ORCID Icon, , , , &
Received 18 Nov 2023, Accepted 06 Mar 2024, Published online: 22 Mar 2024

References

  • Abdollahpour, N., Asoodeh, A., Saberi, M. R., & Chamani, J. (2011). Separate and simultaneous binding effects of aspirin and amlodipine to human serum albumin based on fluorescence spectroscopic and molecular modeling characterizations: A mechanistic insight for determining usage drugs doses. Journal of Luminescence, 131(9), 1885–1899. https://doi.org/10.1016/j.jlumin.2011.04.043
  • Allahyari, M., Motavalizadeh-Kakhky, A. R., Mehrzad, J., Zhiani, R., & Chamani, J. (2023). Cellulose nanocrystals derived from chicory plant: An un-competitive inhibitor of aromatase in breast cancer cells via PI3K/AKT/mTOP signalling pathway. Journal of Biomolecular Structure & Dynamics, 1–15. https://doi.org/10.1080/07391102.2023.2226751
  • Anfinsen, C. B., & Redfield, R. R. (1956). Protein structure in relation to function and biosynthesis. Advances in Protein Chemistry, 11, 1–100. https://doi.org/10.1016/S0065-3233(08)60420-9
  • Arbeitman, C. R., Rojas, P., Ojeda-May, P., & Garcia, M. E. (2021). The SARS-CoV-2 spike protein is vulnerable to moderate electric fields. Nature Communications, 12(1), 5407. https://doi.org/10.1038/s41467-021-25478-7
  • Babayan-Mashhadi, F., Rezvani-Noghani, A., Mokaberi, P., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2023). Exploring the binding behavior mechanism of vitamin B12 to α-Casein and β-Casein: Multi-spectroscopy and molecular dynamic approaches. Journal of Biomolecular Structure & Dynamics, 1–18. https://doi.org/10.1080/07391102.2023.2230295
  • Batlle, E., & Massagué, J. (2019). Transforming growth factor-β signaling in immunity and cancer. Immunity, 50(4), 924–940. https://doi.org/10.1016/j.immuni.2019.03.024
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., Jr., & MacKerell, A. D. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., & Lindahl, E. (2010). Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459–466. https://doi.org/10.1021/ct900549r
  • Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441–451. https://doi.org/10.1021/j100785a001
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Chen, D., Zhao, M., & Mundy, G. R. (2004). Bone morphogenetic proteins. Growth Factors (Chur, Switzerland), 22(4), 233–241. https://doi.org/10.1080/08977190412331279890
  • Chen, R., Li, L., & Weng, Z. (2003). ZDOCK: An initial-stage protein-docking algorithm. Proteins, 52(1), 80–87. https://doi.org/10.1002/prot.10389
  • Cheng, T. M.-K., Blundell, T. L., & Fernandez-Recio, J. (2007). pyDock: Electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins, 68(2), 503–515. https://doi.org/10.1002/prot.21419
  • Choi, M. E. (2000). Mechanism of transforming growth factor-β1 signaling: Role of the mitogen-activated protein kinase. Kidney International, 58(77), S53–S58. https://doi.org/10.1046/j.1523-1755.2000.07709.x
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C., & Scharf, M. (1995). The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. Journal of Computational Chemistry, 16(3), 273–284. https://doi.org/10.1002/jcc.540160303
  • Fernández-Recio, J., Totrov, M., & Abagyan, R. (2004). Identification of protein–protein interaction sites from docking energy landscapes. Journal of Molecular Biology, 335(3), 843–865. https://doi.org/10.1016/j.jmb.2003.10.069
  • Fernandez-Recio, J., Totrov, M., Skorodumov, C., & Abagyan, R. (2005). Optimal docking area: A new method for predicting protein-protein interaction sites. Proteins, 58(1), 134–143. https://doi.org/10.1002/prot.20285
  • Frescaline, N., Duchesne, C., Favier, M., Onifarasoaniaina, R., Guilbert, T., Uzan, G., Banzet, S., Rousseau, A., & Lataillade, J. (2020). Physical plasma therapy accelerates wound re-epithelialisation and enhances extracellular matrix formation in cutaneous skin grafts. The Journal of Pathology, 252(4), 451–464. https://doi.org/10.1002/path.5546
  • Goddard, T. D., Huang, C. C., Meng, E. C., Pettersen, E. F., Couch, G. S., Morris, J. H., & Ferrin, T. E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science: A Publication of the Protein Society, 27(1), 14–25. https://doi.org/10.1002/pro.3235
  • Groppe, J., Hinck, C. S., Samavarchi-Tehrani, P., Zubieta, C., Schuermann, J. P., Taylor, A. B., Schwarz, P. M., Wrana, J. L., & Hinck, A. P. (2008). Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Molecular Cell, 29(2), 157–168. https://doi.org/10.1016/j.molcel.2007.11.039
  • Grosdidier, S., & Fernández-Recio, J. (2008). Identification of hot-spot residues in protein-protein interactions by computational docking. BMC Bioinformatics, 9(1), 447. https://doi.org/10.1186/1471-2105-9-447
  • Grosdidier, S., Pons, C., Solernou, A., & Fernández-Recio, J. (2007). Prediction and scoring of docking poses with pyDock. Proteins, 69(4), 852–858. https://doi.org/10.1002/prot.21796
  • Grubmüller, H., Heller, H., Windemuth, A., & Schulten, K. (1991). Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation, 6(1–3), 121–142. https://doi.org/10.1080/08927029108022142
  • Haddad, J. B., Obolensky, A. G., & Shinnick, P. (2007). The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: New findings and a review of earlier work. Journal of Alternative and Complementary Medicine (New York, N.Y.), 13(5), 485–490. https://doi.org/10.1089/acm.2007.5270
  • Hao, Y., Baker, D., & Ten Dijke, P. (2019). TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. International Journal of Molecular Sciences, 20(11), 2767. https://doi.org/10.3390/ijms20112767
  • Hosseinzadeh, M., Nikjoo, S., Zare, N., Delavar, D., Beigoli, S., & Chamani, J. (2018). Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches. Research on Chemical Intermediates, 45(2), 401–423. https://doi.org/10.1007/s11164-018-3608-5
  • Hou, L., & Zagorski, M. G. (2004). Sorting out the driving forces for parallel and antiparallel alignment in the abeta peptide fibril structure. Biophysical Journal, 86(1 Pt 1), 1–2. https://doi.org/10.1016/s0006-3495(04)74077-1
  • Hu, Q., Joshi, R. P., & Schoenbach, K. H. (2005). Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 72(3 Pt 1), 031902. https://doi.org/10.1103/PhysRevE.72.031902
  • Hu, X., Jin, X., Xing, R., Liu, Y., Feng, Y., Lyu, Y., & Zhang, R. (2023). Effect of cold atmospheric plasma induced electric field on aquaporin-5 structure and ROS transport. Results in Physics, 51, 106621. https://doi.org/10.1016/j.rinp.2023.106621
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Iwata, J-I., Hacia, J. G., Suzuki, A., Sanchez-Lara, P. A., Urata, M., & Chai, Y. (2012). Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice. The Journal of Clinical Investigation, 122(3), 873–885. https://doi.org/10.1172/JCI61498
  • Jawaid, P., Rehman, M. U., Zhao, Q. L., Takeda, K., Ishikawa, K., Hori, M., Shimizu, T., & Kondo, T. (2016). Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles. Journal of Cellular and Molecular Medicine, 20(9), 1737–1748. https://doi.org/10.1111/jcmm.12880
  • Kalhori, F., Yazdyani, H., Khademorezaeian, F., Hamzkanloo, N., Mokaberi, P., Hosseini, S., & Chamani, J. (2022). Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence: The Journal of Biological and Chemical Luminescence, 37(11), 1836–1845. https://doi.org/10.1002/bio.4360
  • Katagiri, D., Tsuchiya, T., Tsuda, M., Hata, M., & Hoshino, T. (2002). Computational analysis of stability of the β-sheet structure. The Journal of Physical Chemistry B, 106(35), 9151–9158. https://doi.org/10.1021/jp025757m
  • Keidar, M., Shashurin, A., Volotskova, O., Ann Stepp, M., Srinivasan, P., Sandler, A., & Trink, B. (2013). Cold atmospheric plasma in cancer therapy. Physics of Plasmas, 20(5), 057101. https://doi.org/10.1063/1.4801516
  • Kim, B.-G., Malek, E., Choi, S. H., Ignatz-Hoover, J. J., & Driscoll, J. J. (2021). Novel therapies emerging in oncology to target the TGF-β pathway. Journal of Hematology & Oncology, 14(1), 55. https://doi.org/10.1186/s13045-021-01053-x
  • Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774–797. https://doi.org/10.1016/j.jmb.2007.05.022
  • Kuburich, N. A., Sabapathy, T., Demestichas, B. R., Maddela, J. J., den Hollander, P., & Mani, S. A. (2023). Proactive and reactive roles of TGF-β in cancer. Seminars in Cancer Biology, 95, 120–139. https://doi.org/10.1016/j.semcancer.2023.08.002
  • Li, D., Li, G., Li, J., Liu, Z. Q., Zhang, X., Zhang, Y., & Li, H. P. (2019). Promotion of wound healing of genetic diabetic mice treated by a cold atmospheric plasma jet. IEEE Transactions on Plasma Science, 47(11), 4848–4860. https://doi.org/10.1109/TPS.2019.2928320
  • Lichtman, M. K., Otero-Vinas, M., & Falanga, V. (2016). Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 24(2), 215–222. https://doi.org/10.1111/wrr.12398
  • Lin, A., Truong, B., Patel, S., Kaushik, N., Choi, E. H., Fridman, G., Fridman, A., & Miller, V. (2017). Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress. International Journal of Molecular Sciences, 18(5), 966. https://doi.org/10.3390/ijms18050966
  • LLC Schrödinger, & DeLano, W. (2020). PyMOL. http://www.pymol.org/pymol.
  • Lu, Z., Tang, Y., Luo, J., Zhang, S., Zhou, X., & Fu, L. (2017). Advances in targeting the transforming growth factor β1 signaling pathway in lung cancer radiotherapy. Oncol Lett, 14(5), 5681–5687. https://doi.org/10.3892/ol.2017.6991
  • Maheri, H., Hashemzadeh, F., Shakibapour, N., Kamelniya, E., Malaekeh-Nikouei, B., Mokaberi, P., & Chamani, J. (2022). Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). Journal of Molecular Structure, 1269, 133803. https://doi.org/10.1016/j.molstruc.2022.133803
  • Malek-Esfandiari, Z., Rezvani-Noghani, A., Sohrabi, T., Mokaberi, P., Amiri-Tehranizadeh, Z., & Chamani, J. (2023). Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. Journal of Fluorescence, 33(4), 1537–1557. https://doi.org/10.1007/s10895-023-03169-4
  • Manaloto, E., Gowen, A. A., Lesniak, A., He, Z., Casey, A., Cullen, P. J., & Curtin, J. F. (2020). Cold atmospheric plasma induces silver nanoparticle uptake, oxidative dissolution and enhanced cytotoxicity in glioblastoma multiforme cells. Archives of Biochemistry and Biophysics, 689, 108462. https://doi.org/10.1016/j.abb.2020.108462
  • Massagué, J. (1998). TGF-β signal transduction. Annual Review of Biochemistry, 67(1), 753–791. https://doi.org/10.1146/annurev.biochem.67.1.753
  • Mohamed, R., Cao, Y., Afroz, R., Xu, S., Ta, H. T., Barras, M., Zheng, W., Little, P. J., & Kamato, D. (2020). ROS directly activates transforming growth factor β type 1 receptor signalling in human vascular smooth muscle cells. Biochimica et biophysica acta. General Subjects, 1864(1), 129463. https://doi.org/10.1016/j.bbagen.2019.129463
  • Moosavi-Movahedi, A. A., Chamani, J., Ghourchian, H., Shafiey, H., Sorenson, C. M., & Sheibani, N. (2003). Electrochemical evidence for the molten globule states of cytochrome c induced by N-alkyl sulfates at low concentrations. Journal of Protein Chemistry, 22(1), 23–30. https://doi.org/10.1023/a:1023011609931
  • Mukundan, A., Byeon, C. H., Hinck, C. S., Cunningham, K., Campion, T., Smyth, D. J., Maizels, R. M., & Hinck, A. P. (2022). Convergent evolution of a parasite-encoded complement control protein-scaffold to mimic binding of mammalian TGF-β to its receptors, TβRI and TβRII. The Journal of Biological Chemistry, 298(6), 101994. https://doi.org/10.1016/j.jbc.2022.101994
  • Müller, W. A., Sarkis, J. R., Marczak, L. D. F., & Muniz, A. R. (2022). Molecular dynamics study of the effects of static and oscillating electric fields in ovalbumin. Innovative Food Science&Emerging Technologies, 75, 102911. https://doi.org/10.1016/j.ifset.2021.102911
  • Nyati, S., Schinske-Sebolt, K., Pitchiaya, S., Chekhovskiy, K., Chator, A., Chaudhry, N., Dosch, J., Van Dort, M. E., Varambally, S., Kumar-Sinha, C., Nyati, M. K., Ray, D., Walter, N. G., Yu, H. T., Ross, B. D., & Rehemtulla, A. (2015). The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling. Science Signaling, 8(358), ra1. https://doi.org/10.1126/scisignal.2005379
  • Olsen, O. E., Hella, H., Elsaadi, S., Jacobi, C., Martinez-Hackert, E., & Holien, T. (2020). Activins as dual specificity TGF-β family molecules: SMAD-activation via activin- and BMP-type 1 receptors. Biomolecules, 10(4), 519. https://doi.org/10.3390/biom10040519
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Perlmann, G. E. (1963). Relation of protein conformation to biological activity. Biochemical Journal, 89(1), P45. https://doi.org/10.1042/bj0890001P
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science: A Publication of the Protein Society, 30(1), 70–82. https://doi.org/10.1002/pro.3943
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Razzokov, J., Fazliev, S., Makhkamov, M., Marimuthu, P., Baev, A., & Kurganov, E. (2023). Effect of electric field on α-synuclein fibrils: Revealed by molecular dynamics simulations. International Journal of Molecular Sciences, 24(7), 6312. https://doi.org/10.3390/ijms24076312
  • Romero-Durana, M., Jiménez-García, B., & Fernández-Recio, J. (2020). pyDockEneRes: Per-residue decomposition of protein-protein docking energy. Bioinformatics (Oxford, England), 36(7), 2284–2285. https://doi.org/10.1093/bioinformatics/btz884
  • Sattar, Z., Saberi, M. R., & Chamani, J. (2014). Determination of LMF binding site on a HSA-PPIX complex in the presence of human holo transferrin from the viewpoint of drug loading on proteins. PloS One, 9(1), e84045. https://doi.org/10.1371/journal.pone.0084045
  • Saunders, M. G., & Voth, G. A. (2013). Coarse-graining methods for computational biology. Annual Review of Biophysics, 42(1), 73–93. https://doi.org/10.1146/annurev-biophys-083012-130348
  • Shapira, K. E., Gross, A., Ehrlich, M., & Henis, Y. I. (2012). Coated pit-mediated endocytosis of the type I transforming growth factor-β (TGF-β) receptor depends on a di-leucine family signal and is not required for signaling. The Journal of Biological Chemistry, 287(32), 26876–26889. https://doi.org/10.1074/jbc.M112.362848
  • Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2021). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. Journal of Biomolecular Structure & Dynamics, 39(3), 1029–1043. https://doi.org/10.1080/07391102.2020.1724568
  • Shi, X., Young, C. D., Zhou, H., & Wang, X.-J. (2020). Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules, 10(12), 1666. https://doi.org/10.3390/biom10121666
  • Śledź, P., & Caflisch, A. (2018). Protein structure-based drug design: From docking to molecular dynamics. Current Opinion in Structural Biology, 48, 93–102. https://doi.org/10.1016/j.sbi.2017.10.010
  • Stolfi, C., Troncone, E., Marafini, I., & Monteleone, G. (2021). Role of TGF-beta and Smad7 in gut inflammation, fibrosis and cancer. Biomolecules, 11(1), 17. https://doi.org/10.3390/biom11010017
  • Taheri, R., Hamzkanlu, N., Rezvani, Y., Niroumand, S., Samandar, F., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. Journal of Molecular Liquids, 368, 120826. https://doi.org/10.1016/j.molliq.2022.120826
  • Torres, A. S., Caiafa, A., Garner, A. L., Klopman, S., LaPlante, N., Morton, C., Conway, K., Michelson, A. D., III, Andrew L, F., & Neculaes, V. B. (2014). Platelet activation using electric pulse stimulation: Growth factor profile and clinical implications. The Journal of Trauma and Acute Care Surgery, 77(3 Suppl 2), S94–S100. https://doi.org/10.1097/TA.0000000000000322
  • Urabe, H., Akimoto, R., Kamiya, S., Hosoki, K., Ichikawa, H., & Nishiyama, T. (2021). Effects of pulsed electrical stimulation on growth factor gene expression and proliferation in human dermal fibroblasts. Molecular and Cellular Biochemistry, 476(1), 361–368. https://doi.org/10.1007/s11010-020-03912-6
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vander Ark, A., Cao, J., & Li, X. (2018). TGF-β receptors: In and beyond TGF-β signaling. Cellular Signalling, 52, 112–120. https://doi.org/10.1016/j.cellsig.2018.09.002
  • Wang, W., Li, W. K., Song, M. Y., Wei, S., Liu, C. X., Yang, Y., & Wu, H. (2016). Effects of electromagnetic fields on the metabolism of lubricin of rat chondrocytes. Connective Tissue Research, 57(2), 152–160. https://doi.org/10.3109/03008207.2015.1121249
  • Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., & Massagué, J. (1994). Mechanism of activation of the TGF-beta receptor. Nature, 370(6488), 341–347. https://doi.org/10.1038/370341a0
  • Wu, Y.-T., Chen, L., Tan, Z.-B., Fan, H.-J., Xie, L.-P., Zhang, W.-T., Chen, H.-M., Li, J., Liu, B., & Zhou, Y.-C. (2018). Luteolin inhibits vascular smooth muscle cell proliferation and migration by inhibiting TGFBR1 signaling. Frontiers in Pharmacology, 9, 1059. https://doi.org/10.3389/fphar.2018.01059
  • Yan, D., Sherman, J. H., & Keidar, M. (2017). Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget, 8(9), 15977–15995. https://doi.org/10.18632/oncotarget.13304
  • Yan, D., Xiao, H., Zhu, W., Nourmohammadi, N., Zhang, L. G., Bian, K., & Keidar, M. (2017). The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. Journal of Physics D: Applied Physics, 50(5), 055401. https://doi.org/10.1088/1361-6463/aa53d6
  • Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., & Li, Y. (2021). Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduction and Targeted Therapy, 6(1), 263. https://doi.org/10.1038/s41392-021-00658-5
  • Zhuang, H., Wang, W., Seldes, R. M., Tahernia, A. D., Fan, H., & Brighton, C. T. (1997). Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochemical and Biophysical Research Communications, 237(2), 225–229. https://doi.org/10.1006/bbrc.1997.7118
  • Zuniga, J. E., Ilangovan, U., Mahlawat, P., Hinck, C. S., Huang, T., Groppe, J. C., McEwen, D. G., & Hinck, A. P. (2011). The TβR-I pre-helix extension is structurally ordered in the unbound form and its flanking prolines are essential for binding. Journal of Molecular Biology, 412(4), 601–618. https://doi.org/10.1016/j.jmb.2011.07.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.