140
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A new trivalent recombinant protein for type 2 diabetes mellitus with oral delivery potential: design, expression, and experimental validation

ORCID Icon & ORCID Icon
Received 23 Dec 2023, Accepted 06 Mar 2024, Published online: 11 Mar 2024

References

  • Agrawal, P., Bhalla, S., Usmani, S. S., Singh, S., Chaudhary, K., Raghava, G. P. S., & Gautam, A. (2016). CPPsite 2.0: A repository of experimentally validated cell-penetrating peptides. Nucleic Acids Research, 44(D1), D1098–D1103. https://doi.org/10.1093/nar/gkv1266
  • Akita, T., Kimura, R., Akaguma, S., Nagai, M., Nakao, Y., Tsugane, M., Suzuki, H., Oka, J.-I., & Yamashita, C. (2021). Usefulness of cell-penetrating peptides and penetration accelerating sequence for nose-to-brain delivery of glucagon-like peptide-2. Journal of Controlled Release: Official Journal of the Controlled Release Society, 335, 575–583. https://doi.org/10.1016/j.jconrel.2021.06.007
  • Amet, N., Lee, H. F., & Shen, W. C. (2009). Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharmaceutical Research, 26(3), 523–528. https://doi.org/10.1007/s11095-008-9767-0
  • Bakker, T., Stumpp, M. T., Binz, H. K., Phillips, Ph., Dolado, I., Forrer, P., Merz, F.W., Sonderegger, I., Steiner, D., Gulotti-Georgieva, M., & Saliba, J. A. (2016). Recombinant proteins that simultaneously bind HGF, VEGF-A and serum albumin, comprising ankyrin repeat domains. Google Patents.
  • Binz, H. K., Binz, H. K., Bakker, T. R., Phillips, D. J., Cornelius, A., Zitt, C., Göttler, T., Sigrist, G., Fiedler, U., Ekawardhani, S., Dolado, I., Saliba, J. A., Tresch, G., Proba, K. & Stumpp, M. T. (2017). Design and characterization of MP0250, a tri-specific anti-HGF/anti-VEGF DARPin® drug candidate. In MAbs, 9(8), 1262–1269. Taylor & Francis. https://doi.org/10.1080/19420862.2017.1305529
  • Boersma, Y. L. (2018). Advances in the application of designed ankyrin repeat proteins (DARPins.). Research tools and protein therapeutics, in protein scaffolds. Springer. p. 307–327.
  • Brayden, D. J., Hill, T. A., Fairlie, D. P., Maher, S., & Mrsny, R. J. (2020). Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Advanced Drug Delivery Reviews, 157, 2–36. https://doi.org/10.1016/j.addr.2020.05.007
  • Buccini, D. F., Cardoso, M. H., & Franco, O. L. (2020). Antimicrobial peptides and cell-penetrating peptides for treating intracellular bacterial infections. Frontiers in Cellular and Infection Microbiology, 10, 612931. https://doi.org/10.3389/fcimb.2020.612931
  • Buckley, S. T., Bækdal, T. A., Vegge, A., Maarbjerg, S. J., Pyke, C., Ahnfelt-Rønne, J., Madsen, K. G., Schéele, S. G., Alanentalo, T., Kirk, R. K., Pedersen, B. L., Skyggebjerg, R. B., Benie, A. J., Strauss, H. M., Wahlund, P.-O., Bjerregaard, S., Farkas, E., Fekete, C., Søndergaard, F. L., … Knudsen, L. B. (2018). Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Science Translational Medicine, 10(467), eaar7047. https://doi.org/10.1126/scitranslmed.aar7047
  • Chang, X., Keller, D., O'Donoghue, S. I., & Led, J. J. (2002). NMR studies of the aggregation of glucagon-like peptide-1: Formation of a symmetric helical dimer. FEBS Letters, 515(1-3), 165–170. https://doi.org/10.1016/s0014-5793(02)02466-3
  • Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
  • Collado Camps, E., van Lith, S. A. M., Kip, A., Frielink, C., Joosten, L., Brock, R., & Gotthardt, M. (2023). Conjugation to a cell-penetrating peptide drives the tumour accumulation of the GLP1R antagonist exendin (9-39). European Journal of Nuclear Medicine and Molecular Imaging, 50(4), 996–1004. https://doi.org/10.1007/s00259-022-06041-y
  • Colovos, C., & Yeates, T. (1993). ERRAT: An empirical atom-based method for validating protein structures. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Combet, C., Blanchet, C., Geourjon, C., & Deléage, G. (2000). NPS@: network protein sequence analysis. Trends in Biochemical Sciences, 25(3), 147–150. https://doi.org/10.1016/s0968-0004(99)01540-6
  • Du, Z., Su, H., Wang, W., Ye, L., Wei, H., Peng, Z., Anishchenko, I., Baker, D., & Yang, J. (2021). The trRosetta server for fast and accurate protein structure prediction. Nature Protocols, 16(12), 5634–5651. https://doi.org/10.1038/s41596-021-00628-9
  • Ehsasatvatan, M., & Baghban Kohnehrouz, B. (2023). Designing and computational analyzing of chimeric long-lasting GLP-1 receptor agonists for type 2 diabetes. Scientific Reports, 13(1), 17778. https://doi.org/10.1038/s41598-023-45185-1
  • Ehsasatvatan, M., & Kohnehrouz, B. (2023). Effect of Linker’s Length and Sequence on the Structure and Stability of mGLP-1-DARPin Fusion Protein for Treatment of Type 2 Diabetes: A Computational Study. Yafteh Lorestan University of Medical Sciences, 25(2), 26–47. https://doi.org/10.32592/Yafteh.2023.25.2.26
  • Ehsasatvatan, M., Kohnehrouz, B. B., Gholizadeh, A., Ofoghi, H., & Shanehbandi, D. (2022). The production of the first functional antibody mimetic in higher plants: The chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biological Research, 55(1), 32. https://doi.org/10.1186/s40659-022-00400-7
  • Frejd, F. Y., & Kim, K.-T. (2017). Affibody molecules as engineered protein drugs. Experimental & Molecular Medicine, 49(3), e306-e306–e306. https://doi.org/10.1038/emm.2017.35
  • Gasteiger, E., Hoogland, Ch., Gattiker, A., Duvaud, S., Wilkins, M., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 112, 571–607.
  • Gautam, A., Singh, H., Tyagi, A., Chaudhary, K., Kumar, R., Kapoor, P., & Raghava, G. P. S. (2012). CPPsite: A curated database of cell penetrating peptides. Database: The Journal of Biological Databases and Curation, 2012(0), bas015–bas015. https://doi.org/10.1093/database/bas015
  • Goldstein, R., Sosabowski, J., Livanos, M., Leyton, J., Vigor, K., Bhavsar, G., Nagy-Davidescu, G., Rashid, M., Miranda, E., Yeung, J., Tolner, B., Plückthun, A., Mather, S., Meyer, T., & Chester, K. (2015). Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. European Journal of Nuclear Medicine and Molecular Imaging, 42(2), 288–301. https://doi.org/10.1007/s00259-014-2940-2
  • Graaf, C. D., Donnelly, D., Wootten, D., Lau, J., Sexton, P. M., Miller, L. J., Ahn, J.-M., Liao, J., Fletcher, M. M., Yang, D., Brown, A. J. H., Zhou, C., Deng, J., & Wang, M.-W. (2016). Glucagon-like peptide-1 and its class BG protein–coupled receptors: A long march to therapeutic successes. Pharmacological Reviews, 68(4), 954–1013. https://doi.org/10.1124/pr.115.011395
  • Griffith, D. A., Edmonds, D. J., Fortin, J.-P., Kalgutkar, A. S., Kuzmiski, J. B., Loria, P. M., Saxena, A. R., Bagley, S. W., Buckeridge, C., Curto, J. M., Derksen, D. R., Dias, J. M., Griffor, M. C., Han, S., Jackson, V. M., Landis, M. S., Lettiere, D., Limberakis, C., Liu, Y., … Tess, D. A. (2022). A small-molecule oral agonist of the human glucagon-like peptide-1 receptor. Journal of Medicinal Chemistry, 65(12), 8208–8226. https://doi.org/10.1021/acs.jmedchem.1c01856
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–31. https://doi.org/10.1093/nar/gki376
  • Guo, Z., Peng, H., Kang, J., & Sun, D. (2016). Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomedical Reports, 4(5), 528–534. https://doi.org/10.3892/br.2016.639
  • Hamman, J. H., Enslin, G. M., & Kotzé, A. F. (2005). Oral delivery of peptide drugs: Barriers and developments. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 19(3), 165–177. https://doi.org/10.2165/00063030-200519030-00003
  • Han, X., Lu, Y., Xie, J., Zhang, E., Zhu, H., Du, H., Wang, K., Song, B., Yang, C., Shi, Y., & Cao, Z. (2020). Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nature Nanotechnology, 15(7), 605–614. https://doi.org/10.1038/s41565-020-0693-6
  • Hansen, B. B., Nuhoho, S., Ali, S. N., Dang-Tan, T., Valentine, W. J., Malkin, S. J. P., & Hunt, B. (2020). Oral semaglutide versus injectable glucagon-like peptide-1 receptor agonists: A cost of control analysis. Journal of Medical Economics, 23(6), 650–658. https://doi.org/10.1080/13696998.2020.1722678
  • Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics (Oxford, England), 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345
  • Holz, G. G., Leech, C. A., & Habener, J. F. (1995). Activation of a cAMP-regulated Ca2+-Signaling Pathway in Pancreatic β-Cells by the insulinotropic hormone glucagon-like peptide-1. The Journal of Biological Chemistry, 270(30), 17749–17757. https://doi.org/10.1074/jbc.270.30.17749
  • Hou, J., Yan, R., Ding, D., Yang, L., Wang, C., Wu, Z., Yu, X., Li, W., & Li, M. (2007). Oral administration of a fusion protein containing eight GLP-1 analogues produced in Escherichia coli BL21 (DE3) in streptozotocin-induced diabetic rats. Biotechnology Letters, 29(10), 1439–1446. https://doi.org/10.1007/s10529-007-9427-1
  • Hughes, S., & Neumiller, J. J. (2020). Oral semaglutide. Clinical Diabetes: A Publication of the American Diabetes Association, 38(1), 109–111. https://doi.org/10.2337/cd19-0079
  • Interlandi, G., Wetzel, S. K., Settanni, G., Plückthun, A., & Caflisch, A. (2008). Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments. Journal of Molecular Biology, 375(3), 837–854. https://doi.org/10.1016/j.jmb.2007.09.042
  • Jiang, T., Olson, E. S., Nguyen, Q. T., Roy, M., Jennings, P. A., & Tsien, R. Y. (2004). Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17867–17872. https://doi.org/10.1073/pnas.0408191101
  • Jonsson, A., Dogan, J., Herne, N., Abrahmsén, L., & Nygren, P.-A. (2008). Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Engineering, Design & Selection: PEDS, 21(8), 515–527. https://doi.org/10.1093/protein/gzn028
  • Klein, J. S., Jiang, S., Galimidi, R. P., Keeffe, J. R., & Bjorkman, P. J. (2014). Design and characterization of structured protein linkers with differing flexibilities. Protein Engineering, Design & Selection: PEDS, 27(10), 325–330. https://doi.org/10.1093/protein/gzu043
  • Knudsen, L. B., & Lau, J. (2019). The discovery and development of liraglutide and semaglutide. Frontiers in Endocrinology, 10, 155. https://doi.org/10.3389/fendo.2019.00155
  • Kontermann, R. E. (2016). Half-life extended biotherapeutics. Expert Opinion on Biological Therapy, 16(7), 903–915. https://doi.org/10.1517/14712598.2016.1165661
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kristensen, M., & Nielsen, H. M. (2016). Cell‐penetrating peptides as carriers for oral delivery of biopharmaceuticals. Basic & Clinical Pharmacology & Toxicology, 118(2), 99–106. https://doi.org/10.1111/bcpt.12515
  • Kristensen, M., Franzyk, H., Klausen, M. T., Iversen, A., Bahnsen, J. S., Skyggebjerg, R. B., Foderà, V., & Nielsen, H. M. (2015). Penetratin-mediated transepithelial insulin permeation: Importance of cationic residues and pH for complexation and permeation. The AAPS Journal, 17(5), 1200–1209. https://doi.org/10.1208/s12248-015-9747-3
  • Kumar S, U., Varghese, R. P., Preethi, V. A., Doss, C. G. P., & Zayed, H. (2023). Identification of potential inhibitors targeting GTPase-kirsten RAt sarcoma virus (K-Ras) driven cancers via E-pharmacophore-based virtual screening and drug repurposing approach. Frontiers in Bioscience (Landmark Edition), 28(11), 288. https://doi.org/10.31083/j.fbl2811288
  • Kumar, S. U., et al. (2020). Comprehensive in silico screening and molecular dynamics studies of missense mutations in Sjogren-Larsson syndrome associated with the ALDH3A2 gene. Advances in Protein Chemistry and Structural Biology, 120, 349–377.
  • Kumar, S. U., Sankar, S., Kumar, D. T., Younes, S., Younes, N., Siva, R., Doss, C. G. P., & Zayed, H. (2021). Molecular dynamics, residue network analysis, and cross-correlation matrix to characterize the deleterious missense mutations in GALE causing galactosemia III. Cell Biochemistry and Biophysics, 79(2), 201–219. https://doi.org/10.1007/s12013-020-00960-z
  • Kwon, K.-C., Nityanandam, R., New, J. S., & Daniell, H. (2013). Oral delivery of bioencapsulated exendin‐4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta‐TC 6 cells. Plant Biotechnology Journal, 11(1), 77–86. https://doi.org/10.1111/pbi.12008
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science: A Publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Laskowski, R., MacArthur, M., & Thornton, J. (2006). PROCHECK: Validation of protein-structure coordinates.
  • Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2013). ViennaRNA package 2.0. Algorithms for Molecular Biology: AMB, 6(1), 26–26. vol, https://doi.org/10.1186/1748-7188-6-26
  • Marín-Peñalver, J. J., Martín-Timón, I., Sevillano-Collantes, C., & Del Cañizo-Gómez, F. J. (2016). Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes, 7(17), 354–395. https://doi.org/10.4239/wjd.v7.i17.354
  • McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y. M., Buso, N., Cowley, A. P., & Lopez, R. (2013). Analysis tool web services from the EMBL-EBI. Nucleic Acids Research, 41(Web Server issue), W597–W600. https://doi.org/10.1093/nar/gkt376
  • Milletti, F. (2012). Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discovery Today, 17(15-16), 850–860. https://doi.org/10.1016/j.drudis.2012.03.002
  • Mótyán, J. A., Tóth, F., & Tőzsér, J. (2013). Research applications of proteolytic enzymes in molecular biology. Biomolecules, 3(4), 923–942. https://doi.org/10.3390/biom3040923
  • Müller, T. D., Finan, B., Bloom, S. R., D'Alessio, D., Drucker, D. J., Flatt, P. R., Fritsche, A., Gribble, F., Grill, H. J., Habener, J. F., Holst, J. J., Langhans, W., Meier, J. J., Nauck, M. A., Perez-Tilve, D., Pocai, A., Reimann, F., Sandoval, D. A., Schwartz, T. W., … Tschöp, M. H. (2019). Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 30, 72–130. https://doi.org/10.1016/j.molmet.2019.09.010
  • Nielsen, E. J. B., Yoshida, S., Kamei, N., Iwamae, R., Khafagy, E.-S., Olsen, J., Rahbek, U. L., Pedersen, B. L., Takayama, K., & Takeda-Morishita, M. (2014). In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. Journal of Controlled Release: Official Journal of the Controlled Release Society, 189, 19–24. https://doi.org/10.1016/j.jconrel.2014.06.022
  • Pan, X., Zuallaert, J., Wang, X., Shen, H.-B., Campos, E. P., Marushchak, D. O., & De Neve, W. (2021). ToxDL: Deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics (Oxford, England), 36(21), 5159–5168. https://doi.org/10.1093/bioinformatics/btaa656
  • Pechenov, S., Revell, J., Will, S., Naylor, J., Tyagi, P., Patel, C., Liang, L., Tseng, L., Huang, Y., Rosenbaum, A. I., Balic, K., Konkar, A., Grimsby, J., & Subramony, J. A. (2021). Development of an orally delivered GLP-1 receptor agonist through peptide engineering and drug delivery to treat chronic disease. Scientific Reports, 11(1), 22521. https://doi.org/10.1038/s41598-021-01750-0
  • Peters, T. Jr., (1985). Serum albumin. Advances in Protein Chemistry, 37, 161–245. https://doi.org/10.1016/s0065-3233(08)60065-0
  • R, H. C., Kumar S, U., R, G., Naayanan, P. J., Sathiyarajeswaren, P., Devi, M. S. S., K, S. S., & Doss C, G. P. (2023). An integrated investigation of structural and pathway alteration caused by PIK3CA and TP53 mutations identified in cfDNA of metastatic breast cancer. Journal of Cellular Biochemistry, 124(2), 188–204. https://doi.org/10.1002/jcb.30354
  • Reed, J., Bain, S., & Kanamarlapudi, V. (2020). Recent advances in understanding the role of glucagon-like peptide 1. F1000Research, 9, 239. https://doi.org/10.12688/f1000research.20602.1
  • Ren, L., Cui, Q., Liu, W., Wang, L., Liao, Y., Feng, Y., Sun, W., Yang, Y., Zhang, Z., Jin, T., Prud’homme, G. J., Zhang, L., Li, Y., Leng, Y., & Wang, Q. (2019). Novel GLP-1 analog supaglutide stimulates insulin secretion in mouse and human islet beta-cells and improves glucose homeostasis in diabetic mice. Frontiers in Physiology, 10, 930. https://doi.org/10.3389/fphys.2019.00930
  • Rizzuti, M., Nizzardo, M., Zanetta, C., Ramirez, A., & Corti, S. (2015). Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discovery Today, 20(1), 76–85. https://doi.org/10.1016/j.drudis.2014.09.017
  • Sadeghian, I., Heidari, R., Sadeghian, S., Raee, M. J., & Negahdaripour, M. (2022). Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 169, 106094. https://doi.org/10.1016/j.ejps.2021.106094
  • Saraiva, J. F. K., & Franco, D. (2021). Oral GLP-1 analogue: Perspectives and impact on atherosclerosis in type 2 diabetic patients. Cardiovascular Diabetology, 20(1), 235. https://doi.org/10.1186/s12933-021-01417-0
  • Saxena, A. R., Gorman, D. N., Esquejo, R. M., Bergman, A., Chidsey, K., Buckeridge, C., Griffith, D. A., & Kim, A. M. (2021). Danuglipron (PF-06882961) in type 2 diabetes: A randomized, placebo-controlled, multiple ascending-dose phase 1 trial. Nature Medicine, 27(6), 1079–1087. https://doi.org/10.1038/s41591-021-01391-w
  • Shah, R. B., Ahsan, F., & Khan, M. A. (2002). Oral delivery of proteins: Progress and prognostication. Critical Reviews™ in Therapeutic Drug Carrier Systems, 19(2), 135–169.
  • Shilova, O., & Deyev, S. (2019). DARPins: Promising scaffolds for theranostics. Acta Naturae (англоязычная версия), 11(4), 42–53. https://doi.org/10.32607/20758251-2019-11-4-42-53
  • Siegel, P. M., Bojti, I., Bassler, N., Holien, J., Flierl, U., Wang, X., Waggershauser, P., Tonnar, X., Vedecnik, C., Lamprecht, C., Stankova, I., Li, T., Helbing, T., Wolf, D., Anto-Michel, N., Mitre, L. S., Ehrlich, J., Orlean, L., Bender, I., … Diehl, P. (2021). A DARPin targeting activated Mac-1 is a novel diagnostic tool and potential anti-inflammatory agent in myocarditis, sepsis and myocardial infarction. Basic Research in Cardiology, 116(1), 17. https://doi.org/10.1007/s00395-021-00849-9
  • Steeland, S., Vandenbroucke, R. E., & Libert, C. (2016). Nanobodies as therapeutics: Big opportunities for small antibodies. Drug Discovery Today, 21(7), 1076–1113. https://doi.org/10.1016/j.drudis.2016.04.003
  • Steffansen, B., Nielsen, C. U., & Frokjaer, S. (2005). Delivery aspects of small peptides and substrates for peptide transporters. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 60(2), 241–245. https://doi.org/10.1016/j.ejpb.2005.01.004
  • Steiner, D., Merz, F. W., Sonderegger, I., Gulotti-Georgieva, M., Villemagne, D., Phillips, D. J., Forrer, P., Stumpp, M. T., Zitt, C., & Binz, H. K. (2017). Half-life extension using serum albumin-binding DARPin® domains. Protein Engineering, Design & Selection: PEDS, 30(9), 583–591. https://doi.org/10.1093/protein/gzx022
  • Strohl, W. R. (2015). Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 29(4), 215–239. https://doi.org/10.1007/s40259-015-0133-6
  • Stumpp, M. T., Dawson, K. M., & Binz, H. K. (2020). Beyond Antibodies: The DARPin(®) Drug Platform. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 34(4), 423–433. https://doi.org/10.1007/s40259-020-00429-8
  • Sugita, T., Yoshikawa, T., Mukai, Y., Yamanada, N., Imai, S., Nagano, K., Yoshida, Y., Shibata, H., Yoshioka, Y., Nakagawa, S., Kamada, H., Tsunoda, S-I., & Tsutsumi, Y. (2007). Improved cytosolic translocation and tumor-killing activity of Tat-shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide. Biochemical and Biophysical Research Communications, 363(4), 1027–1032. https://doi.org/10.1016/j.bbrc.2007.09.077
  • Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
  • Tayubi, I. A., Kumar, S. U., & Doss, C. G. (2022). Identification of potential inhibitors, conformational dynamics, and mechanistic insights into mutant Kirsten rat sarcoma virus (G13D) driven cancers. Journal of Cellular Biochemistry, 123(9), 1467–1480. https://doi.org/10.1002/jcb.30305
  • Underwood, C. R., Garibay, P., Knudsen, L. B., Hastrup, S., Peters, G. H., Rudolph, R., & Reedtz-Runge, S. (2010). Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. The Journal of Biological Chemistry, 285(1), 723–730. https://doi.org/10.1074/jbc.M109.033829
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Van Roy, M., Ververken, C., Beirnaert, E., Hoefman, S., Kolkman, J., Vierboom, M., Breedveld, E., 't Hart, B., Poelmans, S., Bontinck, L., Hemeryck, A., Jacobs, S., Baumeister, J., & Ulrichts, H. (2015). The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Research & Therapy, 17(1), 135. https://doi.org/10.1186/s13075-015-0651-0
  • Wang, Y., Dilidaxi, D., Wu, Y., Sailike, J., Sun, X., & Nabi, X.-H. (2020). Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 125, 109914. https://doi.org/10.1016/j.biopha.2020.109914
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–10. https://doi.org/10.1093/nar/gkm290
  • Xia, J., Gao, G., Zhang, C., Ying, J., & Li, J. (2023). Albumin-binding DARPins as scaffold improve the hypoglycemic and anti-obesity effects of exendin-4 in vivo. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 185, 106422. https://doi.org/10.1016/j.ejps.2023.106422
  • Xiao, Q., Giguere, J., Parisien, M., Jeng, W., St-Pierre, S. A., Brubaker, P. L., & Wheeler, M. B. (2001). Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo. Biochemistry, 40(9), 2860–2869. https://doi.org/10.1021/bi0014498
  • Xie, J., Bi, Y., Zhang, H., Dong, S., Teng, L., Lee, R. J., & Yang, Z. (2020). Cell-penetrating peptides in diagnosis and treatment of human diseases: From preclinical research to clinical application. Frontiers in Pharmacology, 11, 697. https://doi.org/10.3389/fphar.2020.00697
  • Xu, F., Wang, K. Y., Wang, N., Li, G., & Liu, D. (2017). Modified human glucagon-like peptide-1 (GLP-1) produced in E. coli has a long-acting therapeutic effect in type 2 diabetic mice. PloS One, 12(7), e0181939. https://doi.org/10.1371/journal.pone.0181939
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Zahnd, C., Kawe, M., Stumpp, M. T., de Pasquale, C., Tamaskovic, R., Nagy-Davidescu, G., Dreier, B., Schibli, R., Binz, H. K., Waibel, R., & Plückthun, A. (2010). Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: Effects of affinity and molecular size. Cancer Research, 70(4), 1595–1605. https://doi.org/10.1158/0008-5472.CAN-09-2724
  • Zahnd, C., Wyler, E., Schwenk, J. M., Steiner, D., Lawrence, M. C., McKern, N. M., Pecorari, F., Ward, C. W., Joos, T. O., & Plückthun, A. (2007). A designed ankyrin repeat protein evolved to picomolar affinity to Her2. Journal of Molecular Biology, 369(4), 1015–1028. https://doi.org/10.1016/j.jmb.2007.03.028
  • Zhang, Y., Guo, P., Ma, Z., Lu, P., Kebebe, D., & Liu, Z. (2021). Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: A review. Journal of Nanobiotechnology, 19(1), 255. https://doi.org/10.1186/s12951-021-01002-3
  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. https://doi.org/10.1093/nar/gkg595

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.