161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of novel hydrazide Schiff bases with anti-diabetic and anti-hyperlipidemic effects: in-vitro, in-vivo and in-silico approaches

, , , , , , , , , , , & ORCID Icon show all
Received 06 Dec 2023, Accepted 06 Mar 2024, Published online: 27 Mar 2024

References

  • Adeghate, E., Schattner, P., & Dunn, E. (2006). An update on the etiology and epidemiology of diabetes mellitus. Annals of the New York Academy of Sciences, 1084(1), 1–29. https://doi.org/10.1196/annals.1372.029
  • Ahmad, S., Khan, M., Shah, M. I. A., Ali, M., Alam, A., Riaz, M., & Khan, K. M. (2022). Synthetic transformation of 2-{2-Fluoro [1, 1′-biphenyl]-4-yl} propanoic acid into hydrazide–hydrazone derivatives: In Vitro urease inhibition and in silico study. ACS Omega, 7(49), 45077–45087. https://doi.org/10.1021/acsomega.2c05498
  • Ahmad, W., Khan, I., Khan, M. A., Ahmad, M., Subhan, F., & Karim, N. (2014). Evaluation of antidiabetic and antihyperlipidemic activity of Artemisia indica linn (aeriel parts) in Streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 151(1), 618–623. https://doi.org/10.1016/j.jep.2013.11.012
  • Akkoc, S., Karatas, H., Muhammed, M. T., Kökbudak, Z., Ceylan, A., Almalki, F., Laaroussi, H., & Ben Hadda, T. (2023). Drug design of new therapeutic agents: Molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. Journal of Biomolecular Structure & Dynamics, 41(14), 6695–6708. https://doi.org/10.1080/07391102.2022.2111360
  • Alam, A., Ali, M., Latif, A., Rehman, N. U., Saher, S., Khan, A., Ullah, S., Ullah, O., Halim, S. A., Sani, F., Al-Harrasi, A., Ahmad, M., & Zainab, F. (2022). Novel Bis-Schiff’s base derivatives of 4-nitroacetophenone as potent α-glucosidase agents: Design, synthesis and in silico approach. Bioorganic Chemistry, 128, 106058. https://doi.org/10.1016/j.bioorg.2022.106058
  • Alam, A., Ali, M., Rehman, N. U., Ullah, S., Halim, S. A., Latif, A., Khan, A., Ullah, O., Ahmad, S., Al-Harrasi, A., Ahmad, M., & Zainab. (2022). Bio-oriented synthesis of novel (S)-flurbiprofen clubbed hydrazone schiff’s bases for diabetic management: In Vitro and in silico studies. Pharmaceuticals, 15(6), 672. https://doi.org/10.3390/ph15060672
  • Alharthy, R. D., Zahra, S. B., Fatima, N., Tabassum, A., Ullah, S., Halim, S. A., Khan, A., Hussain, J., Al-Harrasi, A., & Shafiq, Z. (2023). Synthesis and biological evaluation of novel isatin-hydrazide conjugates as potential antidiabetic agents. Journal of Molecular Structure, 1288, 135783. https://doi.org/10.1016/j.molstruc.2023.135783
  • Ali, S., Ali, M., Khan, A., Ullah, S., Waqas, M., Al-Harrasi, A., Latif, A., Ahmad, M., & Saadiq, M. (2022). Novel 5-(Arylideneamino)-1 H-Benzo [d] imidazole-2-thiols as potent anti-diabetic agents: Synthesis, in vitro α-glucosidase inhibition, and molecular docking studies. ACS Omega, 7(48), 43468–43479. https://doi.org/10.1021/acsomega.2c03854
  • Amartey, N., Nsiah, K., & Mensah, F. (2015). Plasma levels of uric acid, urea and creatinine in diabetics who visit the Clinical Analysis Laboratory (CAn-Lab) at Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Journal of Clinical and Diagnostic Research: JCDR, 9(2), BC05–BC09. https://doi.org/10.7860/JCDR/2015/10905.5530
  • Ansari, K., & Lal, C. (2009). Synthesis and biological activity of some heterocyclic compounds containing benzimidazole and beta-lactam moiety. Journal of Chemical Sciences, 121(6), 1017–1025. https://doi.org/10.1007/s12039-009-0114-8
  • Avula, S. K., Rehman, N. U., Khan, F., Ullah, O., Halim, S. A., Khan, A., Anwar, M. U., Rahman, S. M., Csuk, R., & Al-Harrasi, A. (2023). Triazole‐tethered boswellic acid derivatives against breast cancer: Synthesis, in vitro, and in‐silico studies. Journal of Molecular Structure, 1282, 135181. https://doi.org/10.1016/j.molstruc.2023.135181
  • Azeez, O. H., Alkass, S. Y., & Persike, D. S. (2019). Long-term saccharin consumption and increased risk of obesity, diabetes, hepatic dysfunction, and renal impairment in rats. Medicina, 55(10), 681. https://doi.org/10.3390/medicina55100681
  • Bai, R., Zhu, J., Bai, Z., Mao, Q., Zhang, Y., Hui, Z., Luo, X., Ye, X. Y., & Xie, T. (2022). Second generation β-elemene nitric oxide derivatives with reasonable linkers: Potential hybrids against malignant brain glioma. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 379–385. https://doi.org/10.1080/14756366.2021.2016734
  • Basaran, E., Sogukomerogullari, H. G., Cakmak, R., Akkoc, S., Taskin-Tok, T., & Köse, A. (2022). Novel chiral Schiff base Palladium (II), Nickel (II), Copper (II) and Iron (II) complexes: Synthesis, characterization, anticancer activity and molecular docking studies. Bioorganic Chemistry, 129, 106176. https://doi.org/10.1016/j.bioorg.2022.106176
  • Cardenas, M., Miranda, J., & Beran, D. (2016). Delivery of type 2 diabetes care in low‐and middle‐income countries: Lessons from Lima, Peru. Diabetic Medicine: A Journal of the British Diabetic Association, 33(6), 752–760. https://doi.org/10.1111/dme.13099
  • Chaulya, N. C., Haldar, P. K., & Mukherjee, A. (2011). Antidiabetic activity of methanol extract of rhizomes of Cyperus tegetum Roxb.(Cyperaceae). Acta Poloniae Pharmaceutica, 68(6), 989–992. https://www.ptfarm.pl/wydawnictwa/czasopisma/acta-poloniae-pharmaceutica/110/-/13726
  • Devim, M., Akkoç, S., Zeyrek, C. T., Aslan, H. G., & Kökbudak, Z. (2022). Design, synthesis, in vitro antiproliferative activity properties, quantum chemical and molecular docking studies of novel Schiff bases incorporating pyrimidine nucleus. Journal of Molecular Structure, 1254, 132421. https://doi.org/10.1016/j.molstruc.2022.132421
  • Dhas, T. S., Kumar, V. G., Karthick, V., Vasanth, K., Singaravelu, G., & Govindaraju, K. (2016). Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme and Microbial Technology, 95, 100–106. https://doi.org/10.1016/j.enzmictec.2016.09.003
  • Duong, T. H., Paramita Devi, A., Tran, N. M. A., Phan, H. V. T., Huynh, N. V., Sichaem, J., Tran, H. D., Alam, M., Nguyen, T. P., Nguyen, H. H., Chavasiri, W., & Nguyen, T. C. (2020). Synthesis, α-glucosidase inhibition, and molecular docking studies of novel N-substituted hydrazide derivatives of atranorin as antidiabetic agents. Bioorganic & Medicinal Chemistry Letters, 30(17), 127359. https://doi.org/10.1016/j.bmcl.2020.127359
  • Guo, W., Zhang, Z., Li, L., Liang, X., Wu, Y., Wang, X., Ma, H., Cheng, J., Zhang, A., Tang, P., Wang, C. Z., Wan, J. Y., Yao, H., & Yuan, C. S. (2022). Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacological Research, 182, 106355. https://doi.org/10.1016/j.phrs.2022.106355
  • Halim, S. A., Jabeen, S., Khan, A., & Al-Harrasi, A. (2021). Rational design of novel inhibitors of α-glucosidase: An application of quantitative structure activity relationship and structure-based virtual screening. Pharmaceuticals, 14(5), 482. https://doi.org/10.3390/ph14050482
  • Hasan, A. H., Abdulrahman, F. A., Obaidullah, A. J., Alotaibi, H. F., Alanazi, M. M., Noamaan, M. A., Murugesan, S., Amran, S. I., Bhat, A. R., & Jamalis, J. (2023). Discovery of novel coumarin-schiff base hybrids as potential acetylcholinesterase inhibitors: Design, synthesis, enzyme inhibition, and computational studies. Pharmaceuticals, 16(7), 971. https://doi.org/10.3390/ph16070971
  • Irvin, S. (1968). comprehensive observational assessment: A systematic quantitative procedure for assess_ing the behavioral and physiologic state of the mouse. Phychopharmacologia, 13(3), 222–257. https://doi.org/10.1007/BF00401402
  • Islam, W. U., Khan, F., Waqas, M., Ullah, S., Halim, S. A., Rehman, N. U., Khan, H., Mahmoud, M. H., Batiha, G. E.-S., Khan, A., & Al-Harrasi, A. (2023). In-vivo anti-diabetic and anti-hyperlipidemic effects of natural metabolites from resin of Commiphora mukul and their in-silico to in-vitro target fishing. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 165, 115214. https://doi.org/10.1016/j.biopha.2023.115214
  • Janssen, G., Bode, U., Breu, H., Dohrn, B., Engelbrecht, V., & Göbel, U. (2000). Boswellic acids in the palliative therapy of children with progressive or relapsed brain tumors. Klinische Padiatrie, 212(4), 189–195. https://doi.org/10.1055/s-2000-9676
  • Kausar, N., Ullah, S., Khan, M. A., Zafar, H., Choudhary, M. I., Yousuf, S., & Atia-Tul-Wahab (2021). Celebrex derivatives: Synthesis, α-glucosidase inhibition, crystal structures and molecular docking studies.Bioorganic Chemistry, 106, 104499. https://doi.org/10.1016/j.bioorg.2020.104499
  • Khan, A., Khan, I., Halim, S. A., Rehman, N. U., Karim, N., Ahmad, W., Khan, M., Csuk, R., & Al-Harrasi, A. (2022). Anti-diabetic potential of β-boswellic acid and 11-keto-β-boswellic acid: Mechanistic insights from computational and biochemical approaches. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 147, 112669. https://doi.org/10.1016/j.biopha.2022.112669
  • Kökbudak, Z., Akkoç, S., Karataş, H., Tüzün, B., & Aslan, G. (2022). In Silico and in vitro antiproliferative activity assessment of new schiff bases. ChemistrySelect, 7(3), e202103679. https://doi.org/10.1002/slct.202103679
  • Koro, C. E., Lee, B. H., & Bowlin, S. J. (2009). Antidiabetic medication use and prevalence of chronic kidney disease among patients with type 2 diabetes mellitus in the United States. Clinical Therapeutics, 31(11), 2608–2617. https://doi.org/10.1016/j.clinthera.2009.10.020
  • Li, J. M., Li, X., Chan, L. W., Hu, R., Zheng, T., Li, H., & Yang, S. (2023). Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice. Diabetologia, 66(12), 2368–2386. https://doi.org/10.1007/s00125-023-05992-7
  • Liang, X., Zhang, J., Wang, Y., Wu, Y., Liu, H., Feng, W., Si, Z., Sun, R., Hao, Z., Guo, H., Li, X., Xu, T., Wang, M., Nan, Z., Lv, Y., & Shang, X. (2023). Comparative study of microvascular structural changes in the gestational diabetic placenta. Diabetes & Vascular Disease Research, 20(3), 14791641231173627. https://doi.org/10.1177/14791641231173627
  • Maciel, M. A. M., Pinto, A. C., Veiga, V. F., Jr, Grynberg, N. F., & Echevarria, A. (2002). Medicinal plants: The need for multidisciplinary scientific studies. Química Nova, 25(3), 429–438. https://doi.org/10.1590/S0100-40422002000300016
  • Mariappan, G., Saha, B., Datta, S., Kumar, D., & Haldar, P. (2011). Design, synthesis and antidiabetic evaluation of oxazolone derivatives. Journal of Chemical Sciences, 123(3), 335–341. https://doi.org/10.1007/s12039-011-0079-2
  • McInnes, A. D. (2012). Diabetic foot disease in the United Kingdom: About time to put feet first. Journal of Foot and Ankle Research, 5(1), 26. https://doi.org/10.1186/1757-1146-5-26
  • Nagappa, A., Thakurdesai, P., Rao, N. V., & Singh, J. (2003). Antidiabetic activity of Terminalia catappa Linn fruits. Journal of Ethnopharmacology, 88(1), 45–50. https://doi.org/10.1016/s0378-8741(03)00208-3
  • Narang, R., Narasimhan, B., & Sharma, S. (2012). A review on biological activities and chemical synthesis of hydrazide derivatives. Current Medicinal Chemistry, 19(4), 569–612. https://doi.org/10.2174/092986712798918789
  • Narasimhan, B., Kumar, P., & Sharma, D. (2010). Biological activities of hydrazide derivatives in the new millennium. Acta Pharmaceutica Sciencia, 52(2), 169–180. https://www.actapharmsci.com/abstract.php?id=136
  • Rao, B. K., Giri, R., Kesavulu, M., & Apparao, C. (2001). Effect of oral administration of bark extracts of Pterocarpus santalinus L. on blood glucose level in experimental animals. Journal of Ethnopharmacology, 74(1), 69–74. https://doi.org/10.1016/s0378-8741(00)00344-5
  • Rehman, N. U., Khan, A., Al-Harrasi, A., Hussain, H., Wadood, A., Riaz, M., & Al-Abri, Z. (2018). New α-glucosidase inhibitors from the resins of Boswellia species with structure–glucosidase activity and molecular docking studies. Bioorganic Chemistry, 79, 27–33. https://doi.org/10.1016/j.bioorg.2018.04.020
  • Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843
  • Safavi, M., Foroumadi, A., & Abdollahi, M. (2013). The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opinion on Drug Discovery, 8(11), 1339–1363. https://doi.org/10.1517/17460441.2013.837883
  • Shah, M., Rahman, H., Khan, A., Bibi, S., Ullah, O., Ullah, S., Ur Rehman, N., Murad, W., & Al-Harrasi, A. (2022). Identification of α-glucosidase inhibitors from Scutellaria edelbergii: ESI-LC-MS and computational approach. Molecules (Basel, Switzerland), 27(4), 1322. https://doi.org/10.3390/molecules27041322
  • Shakoor, A., Alam, A., Jan, F., Khan, M., Ali, M., Ullah, S., Khan, A., AlAsmari, A. F., Alasmari, F., Al-Ghafri, A., & Al-Harrasi, A. (2023). Novel benzimidazole derivatives as effective inhibitors of prolyl oligopeptidase: Synthesis, in vitro and in silico analysis. Future Medicinal Chemistry, 16(1), 43–58. https://doi.org/10.4155/fmc-2023-0267
  • Su, M., Hu, R., Tang, T., Tang, W., & Huang, C. (2022). Review of the correlation between Chinese medicine and intestinal microbiota on the efficacy of diabetes mellitus. Frontiers in Endocrinology, 13, 1085092. https://doi.org/10.3389/fendo.2022.1085092
  • Talab, F., Ullah, S., Alam, A., Halim, S. A., Rehman, N. U., Ali, M., Latif, A., Khan, A., Al-Harrasi, A., Ahmad, M., & Zainab. (2023). Bio-oriented synthesis of novel polyhydroquinoline derivatives as α-glucosidase inhibitor for management of diabetes. ACS Omega, 8(7), 6234–6243. https://doi.org/10.1021/acsomega.2c05390
  • Ullah, S., Mirza, S., Salar, U., Hussain, S., Javaid, K., Khan, K. M., Khalil, R., Ul-Haq, Z., Perveen, S., Choudhary, M., & Atia-Tul-Wahab,. (2020). 2-Mercapto benzothiazole derivatives: As potential leads for the diabetic management.Medicinal Chemistry (Shariqah (United Arab Emirates)), 16(6), 826–840. https://doi.org/10.2174/1573406415666190612153150
  • Ullah, S., Waqas, M., Halim, S. A., Khan, I., Khalid, A., Abdalla, A. N., Makeen, H. A., Ibrar, A., Khan, A., & Al-Harrasi, A. (2023). Triazolothiadiazoles and triazolothiadiazines as potent α-glucosidase inhibitors: Mechanistic insights from kinetics studies, molecular docking and dynamics simulations. International Journal of Biological Macromolecules, 250, 126227. https://doi.org/10.1016/j.ijbiomac.2023.126227
  • Wali, S., Ullah, S., Khan, M. A., Hussain, S., Shaikh, M., Choudhary, M. I., Atia-Tul-Wahab, & Atta-Ur-Rahman. (2022). Synthesis of new clioquinol derivatives as potent α-glucosidase inhibitors; molecular docking, kinetic and structure–activity relationship studies.Bioorganic Chemistry, 119, 105506. https://doi.org/10.1016/j.bioorg.2021.105506
  • Xiao, D., Guo, Y., Li, X., Yin, J. Y., Zheng, W., Qiu, X. W., Xiao, L., Liu, R. R., Wang, S. Y., Gong, W. J., Zhou, H. H., & Liu, Z. Q. (2016). The impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms on metformin therapeutic efficacy in Chinese type 2 diabetes patients. International Journal of Endocrinology, 2016, 4350712–4350717. https://doi.org/10.1155/2016/4350712
  • Xu, Z., Zhang, P., Chen, Y., Jiang, J., Zhou, Z., & Zhu, H. (2022). Comparing SARC-CalF with SARC-F for screening sarcopenia in adults with type 2 diabetes mellitus. Frontiers in Nutrition, 9, 803924. https://doi.org/10.3389/fnut.2022.803924
  • Yang, W., Ding, N., Luo, R., Zhang, Q., Li, Z., Zhao, F., Zhang, S., Zhang, X., Zhou, T., Wang, H., Wang, L., Hu, S., Wang, G., Feng, H., & Hu, R. (2023). Exosomes from young healthy human plasma promote functional recovery from intracerebral hemorrhage via counteracting ferroptotic injury. Bioactive Materials, 27, 1–14. https://doi.org/10.1016/j.bioactmat.2023.03.007
  • Yang, Y. Y., Chen, Z., Yang, X. D., Deng, R. R., Shi, L. X., Yao, L. Y., & Xiang, D. X. (2021). Piperazine ferulate prevents high‑glucose‑induced filtration barrier injury of glomerular endothelial cells. Experimental and Therapeutic Medicine, 22(4), 1175. https://doi.org/10.3892/etm.2021.10607
  • Zahra, S. B., Ullah, S., Halim, S. A., Waqas, M., Huda, N. U., Khan, A., Binsaleh, A. Y., El-Kott, A. F., Hussain, J., Al-Harrasi, A., & Shafiq, Z. (2023). Synthesis of novel coumarin-based thiosemicarbazones and their implications in diabetic management via in-vitro and in-silico approaches. Scientific Reports, 13(1), 18014. https://doi.org/10.1038/s41598-023-44837-6
  • Zhao, J., Liu, Y., Zhu, L., Li, J., Liu, Y., Luo, J., Xie, T., & Chen, D. (2023). Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening. Journal of Pharmaceutical Analysis, 13(6), 673–682. https://doi.org/10.1016/j.jpha.2023.04.015
  • Zhu, Y., Huang, R., Wu, Z., Song, S., Cheng, L., & Zhu, R. (2021). Deep learning-based predictive identification of neural stem cell differentiation. Nature Communications, 12(1), 2614. https://doi.org/10.1038/s41467-021-22758-0
  • Zhu, Y., Zhang, Y., Liu, Y., Chu, H., & Duan, H. (2010). Synthesis and biological activity of trans-tiliroside derivatives as potent anti-diabetic agents. Molecules (Basel, Switzerland), 15(12), 9174–9183. https://doi.org/10.3390/molecules15129174
  • Zuberi, Z., Sauli, E., Cun, L., Deng, J., Li, W. J., He, X. L., & Li, W. (2020). Insulin-delivery methods for children and adolescents with type 1 diabetes. Therapeutic Advances in Endocrinology and Metabolism, 11, 2042018820906016. https://doi.org/10.1177/2042018820906016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.