202
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel stacking-based predictor for accurate prediction of antimicrobial peptides

, , & ORCID Icon
Received 21 Sep 2023, Accepted 06 Mar 2024, Published online: 18 Mar 2024

References

  • Ahmad, S., Charoenkwan, P., Quinn, J. M. W., Moni, M. A., Hasan, M. M., Lio’, P., & Shoombuatong, W. (2022). SCORPION is a stacking-based ensemble learning framework for accurate prediction of phage virion proteins. Scientific Reports, 12(1), 4106. https://doi.org/10.1038/s41598-022-08173-5
  • Ahmad, S., Kabir, M., & Hayat, M. (2015). Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou’s general PseAAC. Computer Methods and Programs in Biomedicine, 122(2), 165–174. https://doi.org/10.1016/j.cmpb.2015.07.005
  • Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A. V., Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H. K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., . . . McArthur, A. G. (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48(D1), D517–D525.
  • Andersson, D. I., Hughes, D., & Kubicek-Sutherland, J. Z. (2016). Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 26, 43–57. https://doi.org/10.1016/j.drup.2016.04.002
  • Arif, M., Ahmed, S., Ge, F., Kabir, M., Khan, Y. D., Yu, D.-J., & Thafar, M. (2022). StackACPred: Prediction of anticancer peptides by integrating optimized multiple feature descriptors with stacked ensemble approach. Chemometrics and Intelligent Laboratory Systems, 220, 104458. https://doi.org/10.1016/j.chemolab.2021.104458
  • Bahar, A. A., & Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals (Basel, Switzerland), 6(12), 1543–1575. https://doi.org/10.3390/ph6121543
  • Boman, H. G. (2003). Antibacterial peptides: Basic facts and emerging concepts. Journal of Internal Medicine, 254(3), 197–215. https://doi.org/10.1046/j.1365-2796.2003.01228.x
  • Brahmachary, M., Krishnan, S. P. T., Koh, J. L. Y., Khan, A. M., Seah, S. H., Tan, T. W., Brusic, V., & Bajic, V. B. (2004). ANTIMIC: A database of antimicrobial sequences. Nucleic Acids Research, 32(Database issue), D586–D589. https://doi.org/10.1093/nar/gkh032
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews. Microbiology, 3(3), 238–250. https://doi.org/10.1038/nrmicro1098
  • Charoenkwan, P., Ahmed, S., Nantasenamat, C., Quinn, J. M. W., Moni, M. A., Lio’, P., & Shoombuatong, W. (2022). AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning. Scientific Reports, 12(1), 7697. https://doi.org/10.1038/s41598-022-11897-z
  • Chen, Z., Zhao, P., Li, F., Leier, A., Marquez-Lago, T. T., Wang, Y., Webb, G. I., Smith, A. I., Daly, R. J., Chou, K.-C., & Song, J. (2018). iFeature: A Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics (Oxford, England), 34(14), 2499–2502. https://doi.org/10.1093/bioinformatics/bty140
  • Chou, K.-C. (2011). Some remarks on protein attribute prediction and pseudo amino acid composition. Journal of Theoretical Biology, 273(1), 236–247. https://doi.org/10.1016/j.jtbi.2010.12.024
  • Chung, C.-R., Kuo, T.-R., Wu, L.-C., Lee, T.-Y., & Horng, J.-T. (2020). Characterization and identification of antimicrobial peptides with different functional activities. Briefings in Bioinformatics, 21(3), 1098–1114. https://doi.org/10.1093/bib/bbz043
  • Consortium, U. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.
  • Dubchak, I., Muchnik, I., Holbrook, S. R., & Kim, S. H. (1995). Prediction of protein folding class using global description of amino acid sequence. Proceedings of the National Academy of Sciences of the United States of America, 92(19), 8700–8704. https://doi.org/10.1073/pnas.92.19.8700
  • Fan, L., Sun, J., Zhou, M., Zhou, J., Lao, X., Zheng, H., & Xu, H. (2016). DRAMP: A comprehensive data repository of antimicrobial peptides. Scientific Reports, 6(1), 24482. https://doi.org/10.1038/srep24482
  • Fu, X., Zhu, W., Liao, B., Cai, L., Peng, L., & Yang, J. (2018). Improved DNA-binding protein identification by incorporating evolutionary information into the Chou’s PseAAC. IEEE Access, 6, 66545–66556. https://doi.org/10.1109/ACCESS.2018.2876656
  • Gabere, M. N., & Noble, W. S. (2017). Empirical comparison of web-based antimicrobial peptide prediction tools. Bioinformatics (Oxford, England), 33(13), 1921–1929. https://doi.org/10.1093/bioinformatics/btx081
  • Han, G. S., Yu, Z. G., Anh, V., Krishnajith, A. P. D., & Tian, Y.-C. (2013). An ensemble method for predicting subnuclear localizations from primary protein structures. PloS One, 8(2), e57225. https://doi.org/10.1371/journal.pone.0057225
  • Haney, E. F., Mansour, S. C., & Hancock, R. E. W. (2017). Antimicrobial peptides: An introduction, In P.R. Hansen (Ed.), Antimicrobial peptides: Methods and protocols (pp. 3–22.). Springer.
  • Huang, K.-Y., Chang, T.-H., Jhong, J.-H., Chi, Y.-H., Li, W.-C., Chan, C.-L., Robert Lai, K., & Lee, T.-Y. (2017). Identification of natural antimicrobial peptides from bacteria through metagenomic and metatranscriptomic analysis of high-throughput transcriptome data of Taiwanese oolong teas. BMC Systems Biology, 11(Suppl 7), 131. https://doi.org/10.1186/s12918-017-0503-4
  • Jan, A., Hayat, M., Wedyan, M., Alturki, R., Gazzawe, F., Ali, H., & Alarfaj, F. K. (2022). Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile. Computers in Biology and Medicine, 151(Pt A), 106311. https://doi.org/10.1016/j.compbiomed.2022.106311
  • Jhong, J.-H., Chi, Y.-H., Li, W.-C., Lin, T.-H., Huang, K.-Y., & Lee, T.-Y. (2018). dbAMP: An integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Research, 47(D1), D285–D297. https://doi.org/10.1093/nar/gky1030
  • Jia, C., & He, W. (2016). EnhancerPred: A predictor for discovering enhancers based on the combination and selection of multiple features. Scientific Reports, 6(1), 38741. https://doi.org/10.1038/srep38741
  • Kabir, M., & Hayat, M. (2016). iRSpot-GAEnsC: Identifing recombination spots via ensemble classifier and extending the concept of Chou’s PseAAC to formulate DNA samples. Molecular Genetics and Genomics: MGG, 291(1), 285–296. https://doi.org/10.1007/s00438-015-1108-5
  • Kabir, M., Iqbal, M., Ahmad, S., & Hayat, M. (2015). iTIS-PseKNC: Identification of Translation Initiation Site in human genes using pseudo k-tuple nucleotides composition. Computers in Biology and Medicine, 66, 252–257. https://doi.org/10.1016/j.compbiomed.2015.09.010
  • Kavousi, K., Bagheri, M., Behrouzi, S., Vafadar, S., Atanaki, F. F., Lotfabadi, B. T., Ariaeenejad, S., Shockravi, A., & Moosavi-Movahedi, A. A. (2020). IAMPE: NMR-assisted computational prediction of antimicrobial peptides. Journal of Chemical Information and Modeling, 60(10), 4691–4701. https://doi.org/10.1021/acs.jcim.0c00841
  • Khaledian, E., Brayton, K. A., & Broschat, S. L. (2020). A systematic approach to bacterial phylogeny using order level sampling and identification of HGT using network science. Microorganisms, 8(2), 312. https://doi.org/10.3390/microorganisms8020312
  • Khaledian, E., & Broschat, S. L. (2020). Sequence-based discovery of antibacterial peptides using ensemble gradient boosting. In Proceedings MDPI.
  • Lee, H.-T., Lee, C.-C., Yang, J.-R., Lai, J. Z. C., & Chang, K. Y. (2015). A large-scale structural classification of antimicrobial peptides. BioMed Research International, 2015, 475062. https://doi.org/10.1155/2015/475062
  • Lin, H.-Y. (2016). Gene discretization based on EM clustering and adaptive sequential forward gene selection for molecular classification. Applied Soft Computing, 48, 683–690. https://doi.org/10.1016/j.asoc.2016.07.015
  • Lv, H., Yan, K., Guo, Y., Zou, Q., Hesham, A. E.-L., & Liu, B. (2022). AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning. Computers in Biology and Medicine, 146, 105577. https://doi.org/10.1016/j.compbiomed.2022.105577
  • Meher, P. K., Tanmaya, K. S., Varsha, S., & Atmakuri, R. R. (2017). Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Scientific Reports, 7(1), 42362.
  • Meher, P. K., Sahu, T. K., Saini, V., & Rao, A. R. (2017). Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Scientific Reports, 7(1), 42362. https://doi.org/10.1038/srep42362
  • Müller, K. R., Mika, S., Tsuda, K., & Schölkopf, K. (2018). An introduction to kernel-based learning algorithms, in Handbook of neural network signal processing (pp. 4–1–4-40). CRC Press.
  • Mulpuru, V., Semwal, R., Varadwaj, P. K., & Mishra, N. (2021). HAMP: A knowledge-base of antimicrobial peptides from human microbiome. Current Bioinformatics, 16(4), 534–540. https://doi.org/10.2174/1574893615999200802041228
  • Nayab, S., Aslam, M. A., Rahman, S. U., Sindhu, Z. D., Sajid, S., Zafar, N., Razaq, M., Kanwar, R., Amanullah. A review of antimicrobial peptides: Its function, mode of action and therapeutic potential. International Journal of Peptide Research and Therapeutics 2022. 28(1): 46. https://doi.org/10.1007/s10989-021-10325-6
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830.
  • Piotto, S. P., Sessa, L., Concilio, S., & Iannelli, P. (2012). YADAMP: Yet another database of antimicrobial peptides. International Journal of Antimicrobial Agents, 39(4), 346–351. https://doi.org/10.1016/j.ijantimicag.2011.12.003
  • Seebah, S., Suresh, A., Zhuo, S., Choong, Y. H., Chua, H., Chuon, D., Beuerman, R., & Verma, C. (2007). Defensins knowledgebase: A manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Research, 35(Database issue), D265–D268. https://doi.org/10.1093/nar/gkl866
  • Singh, S., Chaudhary, K., Dhanda, S. K., Bhalla, S., Usmani, S. S., Gautam, A., Tuknait, A., Agrawal, P., Mathur, D., & Raghava, G. P. S. (2015). SATPdb: A database of structurally annotated therapeutic peptides. Nucleic Acids Research, 44(D1), D1119–D1126. https://doi.org/10.1093/nar/gkv1114
  • Singh, O., Hsu, W.-L., & Su, E. C.-Y. (2021). Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features. BMC Bioinformatics22(1), 1–21.
  • Tahir, M., Hayat, M., & Chong, K. T. (2021). A convolution neural network-based computational model to identify the occurrence sites of various RNA modifications by fusing varied features. Chemometrics and Intelligent Laboratory Systems, 211, 104233. https://doi.org/10.1016/j.chemolab.2021.104233
  • Thomas, S., Karnik, S., Barai, R. S., Jayaraman, V. K., & Idicula-Thomas, S. (2010). CAMP: A useful resource for research on antimicrobial peptides. Nucleic Acids Research, 38(Database issue), D774–D780. https://doi.org/10.1093/nar/gkp1021
  • Tomii, K., & Kanehisa, M. (1996). Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Engineering, 9(1), 27–36. https://doi.org/10.1093/protein/9.1.27
  • Veltri, D., Kamath, U., & Shehu, A. (2018). Deep learning improves antimicrobial peptide recognition. Bioinformatics (Oxford, England), 34(16), 2740–2747. https://doi.org/10.1093/bioinformatics/bty179
  • Waghu, F. H., Barai, R. S., Gurung, P., & Idicula-Thomas, S. (2016). CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Research, 44(D1), D1094–D1097. https://doi.org/10.1093/nar/gkv1051
  • Wang, G., Li, X., & Wang, Z. (2015). APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 44(D1), D1087–D1093. https://doi.org/10.1093/nar/gkv1278
  • Waris, M., Ahmad, K., Kabir, M., & Hayat, M. (2016). Identification of DNA binding proteins using evolutionary profiles position specific scoring matrix. Neurocomputing, 199, 154–162. https://doi.org/10.1016/j.neucom.2016.03.025
  • Wei, L., Zhou, C., Chen, H., Song, J., & Su, R. (2018). ACPred-FL: A sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics (Oxford, England), 34(23), 4007–4016. https://doi.org/10.1093/bioinformatics/bty451
  • Wu, Q., Patočka, J., & Kuča, K. (2018). Insect antimicrobial peptides, A mini review. Toxins, 10(11), 461. https://doi.org/10.3390/toxins10110461
  • Xiao, X., Wang, P., Lin, W.-Z., Jia, J.-H., & Chou, K.-C. (2013). iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Analytical Biochemistry, 436(2), 168–177. https://doi.org/10.1016/j.ab.2013.01.019
  • Xu, J., Li, F., Leier, A., Xiang, D., Shen, H.-H., Marquez Lago, T. T., Li, J., Yu, D.-J., & Song, J. (2021). Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides. Briefings in Bioinformatics, 22(5), bbab083. https://doi.org/10.1093/bib/bbab083
  • Yan, J., Bhadra, P., Li, A., Sethiya, P., Qin, L., Tai, H. K., Wong, K. H., & Siu, S. W. I. (2020). Deep-AmPEP30: Improve short antimicrobial peptides prediction with deep learning. Molecular Therapy Nucleic Acids, 20, 882–894. https://doi.org/10.1016/j.omtn.2020.05.006
  • Ye, G., Wu, H., Huang, J., Wang, W., Ge, K., Li, G., Zhong, J., & Huang, Q. (2020). LAMP2: A major update of the database linking antimicrobial peptides. Database, 2020, 1–6. https://doi.org/10.1093/database/baaa061
  • Yount, N. Y., & Yeaman, M. R. (2005). Immunocontinuum: Perspectives in antimicrobial peptide mechanisms of action and resistance. Protein and Peptide Letters, 12(1), 49–67. https://doi.org/10.2174/0929866053405959
  • Yu, J., Shi, S., Zhang, F., Chen, G., & Cao, M. (2018). PredGly: Predicting lysine glycation sites for Homo sapiens based on XGboost feature optimization. Bioinformatics (Oxford, England), 35(16), 2749–2756. https://doi.org/10.1093/bioinformatics/bty1043
  • Zelezetsky, I., Pontillo, A., Puzzi, L., Antcheva, N., Segat, L., Pacor, S., Crovella, S., & Tossi, A. (2006). Evolution of the primate cathelicidin: Correlation between structural variations and antimicrobial activity. The Journal of Biological Chemistry, 281(29), 19861–19871. https://doi.org/10.1074/jbc.M511108200
  • Zhao, X., Wu, H., Lu, H., Li, G., & Huang, Q. (2013). LAMP: A database linking antimicrobial peptides. PloS One, 8(6), e66557. https://doi.org/10.1371/journal.pone.0066557

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.