257
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico screening of selective ATP mimicking inhibitors targeting the Plasmodium falciparum Grp94

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 24 Oct 2023, Accepted 06 Mar 2024, Published online: 18 Mar 2024

References

  • Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106(5), 1589–1615. https://doi.org/10.1021/CR040426M
  • Ahamad, S., Hema, K., & Gupta, D. (2023). Identification of novel tau-tubulin kinase 2 inhibitors using computational approaches. ACS Omega, 8(14), 13026–13037. https://doi.org/10.1021/acsomega.3c00225
  • Baviskar, S. N., & Shields, M. S. (2010). RNAi silenced Dd-grp94 (Dictyostelium discoideum glucose-regulated protein 94 kDa) cell lines in Dictyostelium exhibit marked reduction in growth rate and delay in development. Gene Expression, 15(2), 75–87. https://doi.org/10.3727/105221611X12973615737587
  • Bhattacharjee, S., Coppens, I., Mbengue, A., Suresh, N., Ghorbal, M., Slouka, Z., Safeukui, I., Tang, H.-Y., Speicher, D. W., Stahelin, R. V., Mohandas, N., & Haldar, K. (2018). Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance. Blood, 131(11), 1234–1247. https://doi.org/10.1182/blood-2017-11-814665
  • Chaubey, S., Grover, M., & Tatu, U. (2014). Endoplasmic reticulum stress triggers gametocytogenesis in the malaria parasite. The Journal of Biological Chemistry, 289(24), 16662–16674. https://doi.org/10.1074/JBC.M114.551549
  • Daniyan, M. O., Przyborski, J. M., & Shonhai, A. (2019). Partners in mischief: Functional networks of heat shock proteins of Plasmodium falciparum and their influence on parasite virulence. Biomolecules, 9(7), 295. https://doi.org/10.3390/BIOM9070295
  • Descoteaux, A., Avila, H. A., Zhang, K., Turco, S. J., & Beverley, S. M. (2002). Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. The EMBO Journal, 21(17), 4458–4469. https://doi.org/10.1093/emboj/cdf447
  • Duan, X., Iwanowycz, S., Ngoi, S., Hill, M., Zhao, Q., & Liu, B. (2021). Molecular chaperone GRP94/GP96 in cancers: Oncogenesis and therapeutic target. Frontiers in Oncology, 11, 629846. https://doi.org/10.3389/FONC.2021.629846/BIBTEX
  • Duerfeldt, A. S., Peterson, L. B., Maynard, J. C., Ng, C. L., Eletto, D., Ostrovsky, O., Shinogle, H. E., Moore, D. S., Argon, Y., Nicchitta, C. V., & Blagg, B. S. J. (2012). Development of a Grp94 inhibitor. Journal of the American Chemical Society, 134(23), 9796–9804. https://doi.org/10.1021/JA303477G/SUPPL_FILE/JA303477G_SI_001.PDF
  • Easton, D. P., Kaneko, Y., & Subjeck, J. R. (2000). The Hsp110 and Grp170 stress proteins: Newly recognized relatives of the Hsp70s. Cell Stress & Chaperones, 5(4), 276. https://doi.org/10.1379/1466-1268(2000)005
  • Eletto, D., Dersh, D., & Argon, Y. (2010). GRP94 in ER quality control and stress responses. Seminars in Cell & Developmental Biology, 21(5), 479–485. https://doi.org/10.1016/J.SEMCDB.2010.03.004
  • Hessling, M., Richter, K., & Buchner, J. (2009). Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nature Structural & Molecular Biology, 16(3), 287–293. https://doi.org/10.1038/nsmb.1565
  • Hetz, C., Zhang, K., & Kaufman, R. J. (2020). Mechanism, regulation and functions of the unfolded protein response. Nature Reviews Molecular Cell Biology, 21(8), 421–438. https://doi.org/10.1038/s41580-020-0250-z
  • Irwin, J. J., Tang, K. G., Young, J., Dandarchuluun, C., Wong, B. R., Khurelbaatar, M., Moroz, Y. S., Mayfield, J., & Sayle, R. A. (2020). ZINC20-A free ultralarge-scale chemical database for ligand discovery. Journal of Chemical Information and Modeling, 60(12), 6065–6073. https://doi.org/10.1021/ACS.JCIM.0C00675
  • Jonsdottir, T. K., Gabriela, M., Crabb, B. S., de Koning-Ward, T. F., & Gilson, P. R. (2021). Defining the essential exportome of the malaria parasite. Trends in Parasitology, 37(7), 664–675. https://doi.org/10.1016/j.pt.2021.04.009
  • Li, L., Wang, L., You, Q.-D., & Xu, X.-L. (2020). Heat shock protein 90 inhibitors: An update on achievements, challenges, and future directions. Journal of Medicinal Chemistry, 63(5), 1798–1822. https://doi.org/10.1021/ACS.JMEDCHEM.9B00940
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195/METRICS
  • Mbengue, A., Bhattacharjee, S., Pandharkar, T., Liu, H., Estiu, G., Stahelin, R. V., Rizk, S. S., Njimoh, D. L., Ryan, Y., Chotivanich, K., Nguon, C., Ghorbal, M., Lopez-Rubio, J.-J., Pfrender, M., Emrich, S., Mohandas, N., Dondorp, A. M., Wiest, O., & Haldar, K. (2015). A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 520(7549), 683–687. https://doi.org/10.1038/nature14412
  • McCaffrey, K., & Braakman, I. (2016). Protein quality control at the endoplasmic reticulum. Essays in Biochemistry, 60(2), 227–235. https://doi.org/10.1042/EBC20160003
  • Mok, S., Ashley, E. A., Ferreira, P. E., Zhu, L., Lin, Z., Yeo, T., Chotivanich, K., Imwong, M., Pukrittayakamee, S., Dhorda, M., Nguon, C., Lim, P., Amaratunga, C., Suon, S., Hien, T. T., Htut, Y., Faiz, M. A., Onyamboko, M. A., Mayxay, M., … Bozdech, Z. (2015). Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science (New York, N.Y.), 347(6220), 431–435. https://doi.org/10.1126/SCIENCE.1260403
  • Munjal, N. S., Shukla, R., & Singh, T. R. (2019). Chemometric approach to estimate kinetic properties of paclitaxel prodrugs and their substructures for solubility prediction through molecular modelling and simulation studies. Journal of Chemometrics, 33(11), 3181. https://doi.org/10.1002/cem.3181
  • Pooe, K., Worth, R., Iwuchukwu, E. A., Dirr, H. W., & Achilonu, I. (2021). An empirical and theoretical description of Schistosoma japonicum glutathione transferase inhibition by bromosulfophthalein and indanyloxyacetic acid 94. Journal of Molecular Structure, 1223, 128892. https://doi.org/10.1016/j.molstruc.2020.128892
  • Pugh, K. W., Alnaed, M., Brackett, C. M., & Blagg, B. S. J. (2022). The biology and inhibition of glucose-regulated protein 94/gp96. Medicinal Research Reviews, 42(6), 2007–2024. https://doi.org/10.1002/MED.21915
  • Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 261(3), 470–489. https://doi.org/10.1006/JMBI.1996.0477
  • Rocamora, F., Zhu, L., Liong, K. Y., Dondorp, A., Miotto, O., Mok, S., & Bozdech, Z. (2018). Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathogens, 14(3), e1006930. https://doi.org/10.1371/JOURNAL.PPAT.1006930
  • Roe, S. M., Prodromou, C., O'Brien, R., Ladbury, J. E., Piper, P. W., & Pearl, L. H. (1999). Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. Journal of Medicinal Chemistry, 42(2), 260–266. https://doi.org/10.1021/JM980403Y
  • Stofberg, M. L., Caillet, C., de Villiers, M., & Zininga, T. (2021). Inhibitors of the plasmodium falciparum hsp90 towards selective antimalarial drug design: The past, present and future. Cells, 10(11), 2849. https://doi.org/10.3390/CELLS10112849/S1
  • Suresh, N., & Haldar, K. (2018). Mechanisms of artemisinin resistance in Plasmodium falciparum malaria. Current Opinion in Pharmacology, 42, 46–54. https://doi.org/10.1016/j.coph.2018.06.003
  • Taipale, M., Krykbaeva, I., Koeva, M., Kayatekin, C., Westover, K. D., Karras, G. I., & Lindquist, S. (2012). Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell, 150(5), 987–1001. https://doi.org/10.1016/j.cell.2012.06.047
  • Tilley, L., Straimer, J., Gnädig, N. F., Ralph, S. A., & Fidock, D. A. (2016). Artemisinin action and resistance in Plasmodium falciparum. Trends in Parasitology, 32(9), 682–696. https://doi.org/10.1016/j.pt.2016.05.010
  • Tran, Q. H., et al. (2022). Identification of small molecules as potential inhibitors of interleukin 6: A multi-computational investigation. Molecular Diversity, 1, 1–16. https://doi.org/10.1007/S11030-022-10558-7/FIGURES/9
  • Zaib, S., Rana, N., Hussain, N., Ogaly, H. A., Dera, A. A., & Khan, I. (2023). Identification of potential inhibitors for the treatment of Alkaptonuria using an integrated in silico computational strategy. Molecules (Basel, Switzerland), 28(6), 2623. https://doi.org/10.3390/MOLECULES28062623/S1
  • Zhang, M., Gallego-Delgado, J., Fernandez-Arias, C., Waters, N. C., Rodriguez, A., Tsuji, M., Wek, R. C., Nussenzweig, V., & Sullivan, W. J. (2017). Inhibiting the Plasmodium eIF2α kinase PK4 prevents artemisinin-induced latency. Cell Host & Microbe, 22(6), 766–776.e4. https://doi.org/10.1016/J.CHOM.2017.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.