998
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanistic insights into interactions between ionizable lipid nanodroplets and biomembranes

, , &
Received 15 Nov 2023, Accepted 06 Mar 2024, Published online: 15 Mar 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., & Sorensen, D. (1999). LAPACK Users’ Guide. (3rd ed.). Society for Industrial and Applied Mathematics.
  • Beg, M., Taka, J., Kluyver, T., Konovalov, A., Ragan-Kelley, M., Thiery, N. M., & Fangohr, H. (2021). Using Jupyter for reproducible scientific workflows. Computing in Science & Engineering, 23(2), 36–46. https://doi.org/10.1109/MCSE.2021.3052101
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H. J. C., Van Der Spoel, D., & Van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Brader, M. L., Williams, S. J., Banks, J. M., Hui, W. H., Zhou, Z. H., & Jin, L. (2021). Encapsulation state of messenger RNA inside lipid nanoparticles. Biophysical Journal, 120S0006349521002411. (14), 2766–2770. https://doi.org/10.1016/j.bpj.2021.03.012
  • Bruininks, B. M., Souza, P. C., Ingolfsson, H., & Marrink, S. J. (2020). A molecular view on the escape of lipoplexed DNA from the endosome. eLife, 9, e52012. https://doi.org/10.7554/eLife.52012
  • Carrasco, M. J., Alishetty, S., Alameh, M.-G., Said, H., Wright, L., Paige, M., Soliman, O., Weissman, D., Cleveland, T. E., Grishaev, A., & Buschmann, M. D. (2021). Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Communications Biology, 4(1), 956. https://doi.org/10.1038/s42003-021-02441-2
  • Chapman, B., & Chang, J. (2000). Biopython: Python tools for computational biology. ACM SIGBIO Newsletter, 20(2), 15–19. https://doi.org/10.1145/360262.360268
  • Chen, J., Zhou, G., Chen, L., Wang, Y., Wang, X., & Zeng, S. (2016). Interaction of graphene and its oxide with lipid membrane: A molecular dynamics simulation study. The Journal of Physical Chemistry C, 120(11), 6225–6231. https://doi.org/10.1021/acs.jpcc.5b10635
  • Cheng, M. H. Y., Brimacombe, C. A., Verbeke, R., & Cullis, P. R. (2022). Exciting times for lipid nanoparticles: How Canadian discoveries are enabling gene therapies. Molecular Pharmaceutics, 19(6), 1663–1668. https://doi.org/10.1021/acs.molpharmaceut.2c00365
  • Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., & De Hoon, M. J. L. (2009). Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics (Oxford, England), 25(11), 1422–1423. https://doi.org/10.1093/bioinformatics/btp163
  • COVID-19 vaccine doses administered by manufacturer. (n.d.). Retrieved October 5, 2023 https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer?country=European+Union∼USA
  • Dehghani-Ghahnaviyeh, S., Smith, M., Xia, Y., Dousis, A., Grossfield, A., & Sur, S. (2023). Ionizable amino lipids distribution and effects on DSPC/cholesterol membranes: Implications for lipid nanoparticle structure. The Journal of Physical Chemistry. B, 127(31), 6928–6939. https://doi.org/10.1021/acs.jpcb.3c01296
  • Ding, W., Palaiokostas, M., Wang, W., & Orsi, M. (2015). Effects of lipid composition on bilayer membranes quantified by all-atom molecular dynamics. The Journal of Physical Chemistry. B, 119(49), 15263–15274. https://doi.org/10.1021/acs.jpcb.5b06604
  • Doktorova, M., Symons, J. L., & Levental, I. (2020). Structural and functional consequences of reversible lipid asymmetry in living membranes. Nature Chemical Biology, 16(12), 1321–1330. https://doi.org/10.1038/s41589-020-00688-0
  • Ermilova, I., & Swenson, J. (2020). DOPC versus DOPE as a helper lipid for gene-therapies: Molecular dynamics simulations with DLin-MC3-DMA. Physical Chemistry Chemical Physics: PCCP, 22(48), 28256–28268. https://doi.org/10.1039/D0CP05111J
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Eygeris, Y., Gupta, M., Kim, J., & Sahay, G. (2022). Chemistry of lipid nanoparticles for RNA delivery. Accounts of Chemical Research, 55(1), 2–12. https://doi.org/10.1021/acs.accounts.1c00544
  • Gould, I. R., Skjevik, Å. A., Dickson, C. J., Madej, B. D., & Walker, R. C. (2018). Lipid17: A comprehensive AMBER force field for the simulation of zwitterionic and anionic lipids.
  • Gowers, R., Linke, M., Barnoud, J., Reddy, T., Melo, M., Seyler, S., Domański, J., Dotson, D., Buchoux, S., Kenney, I., & Beckstein, O. (2016). MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. 98–105. https://doi.org/10.25080/Majora-629e541a-00e
  • Hamelryck, T., & Manderick, B. (2003). PDB file parser and structure class implemented in Python. Bioinformatics (Oxford, England), 19(17), 2308–2310. https://doi.org/10.1093/bioinformatics/btg299
  • Harayama, T., & Riezman, H. (2018). Understanding the diversity of membrane lipid composition. Nature Reviews. Molecular Cell Biology, 19(5), 281–296. https://doi.org/10.1038/nrm.2017.138
  • Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
  • Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews. Materials, 6(12), 1078–1094. https://doi.org/10.1038/s41578-021-00358-0
  • Hub, J. S., De Groot, B. L., & Van Der Spoel, D. (2010). g_wham—A free weighted histogram analysis implementation including robust error and autocorrelation estimates. Journal of Chemical Theory and Computation, 6(12), 3713–3720. https://doi.org/10.1021/ct100494z
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
  • Izadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. The Journal of Physical Chemistry Letters, 5(21), 3863–3871. https://doi.org/10.1021/jz501780a
  • Jayaraman, M., Ansell, S. M., Mui, B. L., Tam, Y. K., Chen, J., Du, X., Butler, D., Eltepu, L., Matsuda, S., Narayanannair, J. K., Rajeev, K. G., Hafez, I. M., Akinc, A., Maier, M. A., Tracy, M. A., Cullis, P. R., Madden, T. D., Manoharan, M., & Hope, M. J. (2012). Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angewandte Chemie (International ed. in English), 51(34), 8529–8533. https://doi.org/10.1002/anie.201203263
  • Jo, S., Kim, T., & Im, W. (2007). Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One, 2(9), e880. https://doi.org/10.1371/journal.pone.0000880
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Jo, S., Lim, J. B., Klauda, J. B., & Im, W. (2009). CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophysical Journal, 97(1), 50–58. https://doi.org/10.1016/j.bpj.2009.04.013
  • Joung, I. S., & Cheatham, T. E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. The Journal of Physical Chemistry. B, 112(30), 9020–9041. https://doi.org/10.1021/jp8001614
  • Kaasgaard, T., & Drummond, C. J. (2006). Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Physical Chemistry Chemical Physics: PCCP, 8(43), 4957–4975. https://doi.org/10.1039/b609510k
  • Kulkarni, J. A., Darjuan, M. M., Mercer, J. E., Chen, S., van der Meel, R., Thewalt, J. L., Tam, Y. Y. C., & Cullis, P. R. (2018). On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano, 12(5), 4787–4795. https://doi.org/10.1021/acsnano.8b01516
  • Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H., & Kollman, P. A. (1992). The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13(8), 1011–1021. https://doi.org/10.1002/jcc.540130812
  • Kumari, P., Pillai, V. V. S., & Benedetto, A. (2020). Mechanisms of action of ionic liquids on living cells: The state of the art. Biophysical Reviews, 12(5), 1187–1215. https://doi.org/10.1007/s12551-020-00754-w
  • Lazaratos, M., Karathanou, K., Mainas, E., Chatzigoulas, A., Pippa, N., Demetzos, C., & Cournia, Z. (2020). Coating of magnetic nanoparticles affects their interactions with model cell membranes. Biochimica et Biophysica Acta. General Subjects, 1864(11), 129671. https://doi.org/10.1016/j.bbagen.2020.129671
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Lee, J., Hitzenberger, M., Rieger, M., Kern, N. R., Zacharias, M., & Im, W. (2020). CHARMM-GUI supports the Amber force fields. The Journal of Chemical Physics, 153(3), 035103. https://doi.org/10.1063/5.0012280
  • Lee, J., Patel, D. S., Ståhle, J., Park, S.-J., Kern, N. R., Kim, S., Lee, J., Cheng, X., Valvano, M. A., Holst, O., Knirel, Y. A., Qi, Y., Jo, S., Klauda, J. B., Widmalm, G., & Im, W. (2019). CHARMM-GUI membrane builder for complex biological membrane simulations with glycolipids and lipoglycans. Journal of Chemical Theory and Computation, 15(1), 775–786. https://doi.org/10.1021/acs.jctc.8b01066
  • Leikin, S. L., Kozlov, M. M., Chernomordik, L. V., Markin, V. S., & Chizmadzhev, Y. A. (1987). Membrane fusion: Overcoming of the hydration barrier and local restructuring. Journal of Theoretical Biology, 129(4), 411–425. https://doi.org/10.1016/S0022-5193(87)80021-8
  • Leung, A. K. K., Hafez, I. M., Baoukina, S., Belliveau, N. M., Zhigaltsev, I. V., Afshinmanesh, E., Tieleman, D. P., Hansen, C. L., Hope, M. J., & Cullis, P. R. (2012). Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 116(34), 18440–18450. https://doi.org/10.1021/jp303267y
  • Lindahl, E., Hess, B., & Van Der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. https://doi.org/10.1007/s008940100045
  • Lorent, J. H., Levental, K. R., Ganesan, L., Rivera-Longsworth, G., Sezgin, E., Doktorova, M., Lyman, E., & Levental, I. (2020). Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nature Chemical Biology, 16(6), 644–652. https://doi.org/10.1038/s41589-020-0529-6
  • Malburet, C., Leclercq, L., Cotte, J.-F., Thiebaud, J., Bazin, E., Garinot, M., & Cottet, H. (2022). Size and charge characterization of lipid nanoparticles for mRNA vaccines. Analytical Chemistry, 94(11), 4677–4685. https://doi.org/10.1021/acs.analchem.1c04778
  • Marrink, S.-J., & Mark, A. E. (2004). Molecular view of hexagonal phase formation in phospholipid membranes. Biophysical Journal, 87(6), 3894–3900. https://doi.org/10.1529/biophysj.104.048710
  • Marrink, S.-J., & Tieleman, D. P. (2002). Molecular dynamics simulation of spontaneous membrane fusion during a cubic-hexagonal phase transition. Biophysical Journal, 83(5), 2386–2392. https://doi.org/10.1016/S0006-3495(02)75252-1
  • Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C., Giattino, C., & Rodés-Guirao, L. (2021). A global database of COVID-19 vaccinations. Nature Human Behaviour, 5(7), 947–953. https://doi.org/10.1038/s41562-021-01122-8
  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. https://doi.org/10.1002/jcc.21787
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Páll, S., Abraham, M. J., Kutzner, C., Hess, B., & Lindahl, E. (2015). Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In S. Markidis & E. Laure (Eds.), Solving software challenges for exascale (Vol. 8759, pp. 3–27). Springer International Publishing. https://doi.org/10.1007/978-3-319-15976-8_1
  • Paloncýová, M., Čechová, P., Šrejber, M., Kührová, P., & Otyepka, M. (2021). Role of ionizable lipids in SARS-CoV-2 vaccines as revealed by molecular dynamics simulations: From membrane structure to interaction with mRNA fragments. The Journal of Physical Chemistry Letters, 12(45), 11199–11205. https://doi.org/10.1021/acs.jpclett.1c03109
  • Paloncýová, M., Fabre, G., DeVane, R. H., Trouillas, P., Berka, K., & Otyepka, M. (2014). Benchmarking of force fields for molecule–membrane interactions. Journal of Chemical Theory and Computation, 10(9), 4143–4151. https://doi.org/10.1021/ct500419b
  • Paloncýová, M., Šrejber, M., Čechová, P., Kührová, P., Zaoral, F., & Otyepka, M. (2023). Atomistic insights into organization of RNA-loaded lipid nanoparticles. The Journal of Physical Chemistry. B, 127(5), 1158–1166. https://doi.org/10.1021/acs.jpcb.2c07671
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Patel, P., Ibrahim, N. M., & Cheng, K. (2021). The importance of apparent pKa in the development of nanoparticles encapsulating siRNA and mRNA. Trends in Pharmacological Sciences, 42(6), 448–460. https://doi.org/10.1016/j.tips.2021.03.002
  • Patel, S., Kim, J., Herrera, M., Mukherjee, A., Kabanov, A. V., & Sahay, G. (2019). Brief update on endocytosis of nanomedicines. Advanced Drug Delivery Reviews, 144, 90–111. https://doi.org/10.1016/j.addr.2019.08.004
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Ramasubramani, V., Dice, B. D., Harper, E. S., Spellings, M. P., Anderson, J. A., & Glotzer, S. C. (2020). freud: A software suite for high throughput analysis of particle simulation data. Computer Physics Communications, 254, 107275. https://doi.org/10.1016/j.cpc.2020.107275
  • Ramezanpour, M., Schmidt, M. L., Bashe, B. Y. M., Pruim, J. R., Link, M. L., Cullis, P. R., Harper, P. E., Thewalt, J. L., & Tieleman, D. P. (2020). Structural properties of inverted hexagonal phase: A hybrid computational and experimental approach. Langmuir: The ACS Journal of Surfaces and Colloids, 36(24), 6668–6680. https://doi.org/10.1021/acs.langmuir.0c00600
  • Ramezanpour, M., Schmidt, M. L., Bodnariuc, I., Kulkarni, J. A., Leung, S. S. W., Cullis, P. R., Thewalt, J. L., & Tieleman, D. P. (2019). Ionizable amino lipid interactions with POPC: Implications for lipid nanoparticle function. Nanoscale, 11(30), 14141–14146. https://doi.org/10.1039/C9NR02297J
  • Sandoval-Perez, A., Pluhackova, K., & Böckmann, R. A. (2017). Critical comparison of biomembrane force fields: Protein–lipid interactions at the membrane interface. Journal of Chemical Theory and Computation, 13(5), 2310–2321. https://doi.org/10.1021/acs.jctc.7b00001
  • Schneck, E., Sedlmeier, F., & Netz, R. R. (2012). Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14405–14409. https://doi.org/10.1073/pnas.1205811109
  • Schrödinger, LLC. (2015). The PyMOL Molecular Graphics System, Version 2.5.
  • Semple, S. C., Akinc, A., Chen, J., Sandhu, A. P., Mui, B. L., Cho, C. K., Sah, D. W. Y., Stebbing, D., Crosley, E. J., Yaworski, E., Hafez, I. M., Dorkin, J. R., Qin, J., Lam, K., Rajeev, K. G., Wong, K. F., Jeffs, L. B., Nechev, L., Eisenhardt, M. L., … Hope, M. J. (2010). Rational design of cationic lipids for siRNA delivery. Nature Biotechnology, 28(2), 172–176. https://doi.org/10.1038/nbt.1602
  • Shepherd, S. J., Han, X., Mukalel, A. J., El-Mayta, R., Thatte, A. S., Wu, J., Padilla, M. S., Alameh, M.-G., Srikumar, N., Lee, D., Weissman, D., Issadore, D., & Mitchell, M. J. (2023). Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proceedings of the National Academy of Sciences of the United States of America, 120(33), e2303567120. https://doi.org/10.1073/pnas.2303567120
  • Shin, H., Park, S.-J., Yim, Y., Kim, J., Choi, C., Won, C., & Min, D.-H. (2018). Recent advances in RNA therapeutics and RNA delivery systems based on nanoparticles. Advanced Therapeutics, 1(7), 1800065. https://doi.org/10.1002/adtp.201800065
  • Smith, P., & Lorenz, C. D. (2021). LiPyphilic: A Python toolkit for the analysis of lipid membrane simulations. Journal of Chemical Theory and Computation, 17(9), 5907–5919. https://doi.org/10.1021/acs.jctc.1c00447
  • Torres-Sánchez, A., Vanegas, J. M., & Arroyo, M. (2015). Examining the mechanical equilibrium of microscopic stresses in molecular simulations. Physical Review Letters, 114(25), 258102. https://doi.org/10.1103/PhysRevLett.114.258102
  • Torres-Sánchez, A., Vanegas, J. M., & Arroyo, M. (2016). Geometric derivation of the microscopic stress: A covariant central force decomposition. Journal of the Mechanics and Physics of Solids, 93, 224–239. https://doi.org/10.1016/j.jmps.2016.03.006
  • Trollmann, M. F. W., & Böckmann, R. A. (2022). mRNA lipid nanoparticle phase transition. Biophysical Journal, 121(20), 3927–3939. https://doi.org/10.1016/j.bpj.2022.08.037
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vanegas, J. M., & Arroyo, M. (2014). Force transduction and lipid binding in MscL: A continuum-molecular approach. PloS One, 9(12), e113947. https://doi.org/10.1371/journal.pone.0113947
  • Vanegas, J. M., Torres-Sánchez, A., & Arroyo, M. (2014). Importance of force decomposition for local stress calculations in biomembrane molecular simulations. Journal of Chemical Theory and Computation, 10(2), 691–702. https://doi.org/10.1021/ct4008926
  • Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … van Mulbregt, P. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
  • Wang, F., Zuroske, T., & Watts, J. K. (2020). RNA therapeutics on the rise. Nature Reviews. Drug Discovery, 19(7), 441–442. https://doi.org/10.1038/d41573-020-00078-0
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wu, E. L., Cheng, X., Jo, S., Rui, H., Song, K. C., Dávila-Contreras, E. M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R. M., Klauda, J. B., & Im, W. (2014). CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. Journal of Computational Chemistry, 35(27), 1997–2004. https://doi.org/10.1002/jcc.23702