93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Cu(II) compound containing dipicolinic acid on DNA damage: a study of antiproliferative activity and DNA interaction properties by spectroscopic, molecular docking and molecular dynamics approaches

ORCID Icon, , , , &
Received 22 Oct 2023, Accepted 06 Mar 2024, Published online: 18 Mar 2024

References

  • Abdel-Rahman, L. H., Abu-Dief, A. M., Ismael, M., Mohamed, M. A., & Hashem, N. A. (2016). Synthesis, structure elucidation, biological screening, molecular modeling and DNA binding of some Cu (II) chelates incorporating imines derived from amino acids. Journal of Molecular Structure, 1103, 232–244. https://doi.org/10.1016/j.molstruc.2015.09.039
  • Abdel‐Rahman, L. H., Abu‐Dief, A. M., Moustafa, H., & Hamdan, S. K. (2017). Ni (II) and Cu (II) complexes with ONNO asymmetric tetradentate Schiff base ligand: Synthesis, spectroscopic characterization, theoretical calculations, DNA interaction and antimicrobial studies. Applied Organometallic Chemistry, 31(2), e3555. https://doi.org/10.1002/aoc.3555
  • Abu-Surrah, A. S., & Kettunen, M. (2006). Platinum group antitumor chemistry: Design and development of new anticancer drugs complementary to cisplatin. Current Medicinal Chemistry, 13(11), 1337–1357. https://doi.org/10.2174/092986706776872970
  • Aghabozorg, H., Roshan, L., Firoozi, N., Bagheri, S., Ghorbani, Z., Kalami, S., Mirzaei, M., Shokrollahi, A., Ghaedi, M., Aghaei, R., & Ghadermazi, M. (2010). Syntheses, crystal, and molecular structures of Mn (II), Zn (II), and Ce (III) compounds and solution studies of Mn (II), Ni (II), Cu (II), Zn (II), Cd (II), and Ce (III) compounds obtained from a suitable proton transfer compound containing bda and pydcH 2 (bda = butane-1, 4-diamine; pydcH 2= pyridine-2, 6-dicarboxylic acid. Structural Chemistry, 21(4), 701–714. https://doi.org/10.1007/s11224-010-9600-3
  • Aguirre, J. D., Angeles-Boza, A. M., Chouai, A., Turro, C., Pellois, J.-P., & Dunbar, K. R. (2009). Anticancer activity of heteroleptic diimine complexes of dirhodium: A study of intercalating properties, hydrophobicity and in cellulo activity. Dalton Transactions (Cambridge, England: 2003), 48(2009), 10806–10812. https://doi.org/10.1039/b915357h
  • Alam, M. M., Abul Qais, F., Ahmad, I., Alam, P., Hasan Khan, R., & Naseem, I. (2018). Multi-spectroscopic and molecular modelling approach to investigate the interaction of riboflavin with human serum albumin. Journal of Biomolecular Structure & Dynamics, 36(3), 795–809. https://doi.org/10.1080/07391102.2017.1298470
  • Amézqueta, S., Subirats, X., Fuguet, E., Rosés, M., & Ràfols, C. (2020). Octanol-water partition constant. Liquid-phase extraction (pp. 183–208). Elsevier.
  • Angelici, R. J. (1999). Synthesis and technique in inorganic chemistry. University Science Books.
  • Barton, J. K., Danishefsky, A., & Goldberg, J. (1984). Tris (phenanthroline) ruthenium (II): stereoselectivity in binding to DNA. Journal of the American Chemical Society, 106(7), 2172–2176. https://doi.org/10.1021/ja00319a043
  • Benesi, H. A., & Hildebrand, J. (1949). A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71(8), 2703–2707. https://doi.org/10.1021/ja01176a030
  • Bergamo, A., & Sava, G. (2007). Ruthenium complexes can target determinants of tumour malignancy. Dalton Transactions (Cambridge, England: 2003), (13), 1267–1272. https://doi.org/10.1039/b617769g
  • Biju, A., Rajasekharan, M., Bhat, S. S., Khan, A. A., & Kumbhar, A. S. (2014). Synthesis, crystal structure and cytotoxicity studies of cis-dichloro (4, 5-diazafluoren-9-one) platinum (II. Inorganica Chimica Acta, 423, 93–97. https://doi.org/10.1016/j.ica.2014.09.007
  • Borah, M. J., Bhubon Singh, R., Sinha, U. B., Swu, T., & Borah, P. J. (2012). Synthesis and crystal structure determination of dimeric Co (II) and Ni (II) with pyridine 2, 6-dicarboxylic acid. Journal of Chemical Crystallography, 42(1), 67–75. https://doi.org/10.1007/s10870-011-0205-5
  • Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Cerón-Carrasco, J. P. (2022). When virtual screening yields inactive drugs: Dealing with false theoretical friends. ChemMedChem. 17(16), e202200278. https://doi.org/10.1002/cmdc.202200278
  • Chaveerach, U., Meenongwa, A., Trongpanich, Y., Soikum, C., & Chaveerach, P. (2010). DNA binding and cleavage behaviors of copper (II) complexes with amidino-O-methylurea and N-methylphenyl-amidino-O-methylurea, and their antibacterial activities. Polyhedron, 29(2), 731–738. https://doi.org/10.1016/j.poly.2009.10.031
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Derikvand, Z., Olmstead, M. M., Shokrollahi, A., & Zarghampour, F. (2015). Synthesis, spectroscopic, crystal structures, and potentiometric studies of a proton transfer compound of acridine with pyridine-2, 6-dicarboxylic acid and a novel palladium (II) complex with coordination of acridine. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(1), 104–111. https://doi.org/10.1080/15533174.2013.819897
  • Dustkami, M., & Mansouri-Torshizi, H. (2017). Refolding and unfolding of CT-DNA by newly designed Pd (II) complexes. Their synthesis, characterization and antitumor effects. International Journal of Biological Macromolecules, 99, 319–334. https://doi.org/10.1016/j.ijbiomac.2017.02.063
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Edwards, I. R., & Aronson, J. K. (2000). Adverse drug reactions: Definitions, diagnosis, and management. Lancet (London, England), 356(9237), 1255–1259. https://doi.org/10.1016/S0140-6736(00)02799-9
  • Eslami Moghadam, M., Saidifar, M., Divsalar, A., Mansouri-Torshizi, H., Saboury, A. A., Farhangian, H., & Ghadamgahi, M. (2016). Rich spectroscopic and molecular dynamic studies on the interaction of cytotoxic Pt (II) and Pd (II) complexes of glycine derivatives with calf thymus DNA. Journal of Biomolecular Structure & Dynamics, 34(1), 206–222. https://doi.org/10.1080/07391102.2015.1015056
  • Feizi-Dehnayebi, M., Dehghanian, E., & Mansouri-Torshizi, H. (2021). A novel palladium (II) antitumor agent: Synthesis, characterization, DFT perspective, CT-DNA and BSA interaction studies via in-vitro and in-silico approaches. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 249(2021), 119215. https://doi.org/10.1016/j.saa.2020.119215
  • Feng, X. Z., Lin, Z., Yang, L. J., Wang, C., & Bai, C. L. (1998). Investigation of the interaction between acridine orange and bovine serum albumin. Talanta, 47(5), 1223–1229. https://doi.org/10.1016/s0039-9140(98)00198-2
  • Fiuza, S., Amado, A., Oliveira, P., Sardao, V., de Carvalho, L., & Marques, M. (2006). Pt (II) vs Pd (II) polyamine complexes as new anticancer drugs: A structure-activity study. Letters in Drug Design & Discovery, 3(3), 149–151. https://doi.org/10.2174/157018006776286989
  • Frisch, M., Hratchian, H., Dennington, R., Todd, I. I., Keith, A., & Millam, T. A. (2009). GaussView (Vol. 5). Gaussian, Inc.
  • Galindo-Murillo, R., García-Ramos, J. C., Ruiz-Azuara, L., Cheatham, T. E., & Cortés-Guzmán, F. (2015). Intercalation processes of copper complexes in DNA. Nucleic Acids Research, 43(11), 5364–5376. https://doi.org/10.1093/nar/gkv467
  • Hartinger, C. G., Jakupec, M. A., Zorbas‐Seifried, S., Groessl, M., Egger, A., Berger, W., Zorbas, H., Dyson, P. J., & Keppler, B. K. (2008). KP1019, a new redox‐active anticancer agent–Preclinical development and results of a clinical phase I study in tumor patients. Chemistry & Biodiversity, 5(10), 2140–2155. https://doi.org/10.1002/cbdv.200890195
  • Heidari, A., Mansouri-Torshizi, H., Saeidifar, M., Dehghanian, E., Abdi, K., & Delarami, H. S. (2022). Diverse coordination of dipicolinic acid to Pd (II) ion result antitumor complexes, their interaction with CT-DNA by spectroscopic experiments and computational methods. Journal of Molecular Structure, 1261, 132937. https://doi.org/10.1016/j.molstruc.2022.132937
  • Heydari, A., & Mansouri-Torshizi, H. (2016). Design, synthesis, characterization, cytotoxicity, molecular docking and analysis of binding interactions of novel acetylacetonatopalladium (II) alanine and valine complexes with CT-DNA and BSA. RSC Advances, 6(98), 96121–96137.
  • Hirohama, T., Kuranuki, Y., Ebina, E., Sugizaki, T., Arii, H., Chikira, M., Selvi, P. T., & Palaniandavar, M. (2005). Copper (II) complexes of 1, 10-phenanthroline-derived ligands: Studies on DNA binding properties and nuclease activity. Journal of Inorganic Biochemistry, 99(5), 1205–1219. https://doi.org/10.1016/j.jinorgbio.2005.02.020
  • Jagadeesan, S., Balasubramanian, V., Baumann, P., Neuburger, M., Häussinger, D., & Palivan, C. G. (2013). Water-soluble Co (III) complexes of substituted phenanthrolines with cell selective anticancer activity. Inorganic Chemistry, 52(21), 12535–12544. https://doi.org/10.1021/ic4016228
  • Jassbi, A. R., Vafapour, M., Shokrollahi, A., Firuzi, O., Zare, M., Chandran, J. N., Schneider, B., & Baldwin, I. T. (2017). Cytotoxic activity of two cembranoid diterpenes from against three human cancer cell lines. The Open Bioactive Compounds Journal, 5(1), 1–8. https://doi.org/10.2174/1874847301705010001
  • Jiang, Q., Xiao, N., Shi, P., Zhu, Y., & Guo, Z. (2007). Design of artificial metallonucleases with oxidative mechanism. Coordination Chemistry Reviews, 251(15–16), 1951–1972. https://doi.org/10.1016/j.ccr.2007.02.013
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Khan, H., Badshah, A., Murtaz, G., Said, M., Rehman, ZIA-UR., Neuhausen, C., Todorova, M., Jean-Claude, B. J., & Butler, I. S. (2011). Synthesis, characterization and anticancer studies of mixed ligand dithiocarbamate palladium (II) complexes. European Journal of Medicinal Chemistry, 46(9), 4071–4077. https://doi.org/10.1016/j.ejmech.2011.06.007
  • Kirillova, M. V., Kirillov, A. M., Guedes da Silva, M. F. C., & Pombeiro, A. J. (2008). Self‐assembled two‐dimensional water‐soluble dipicolinate Cu/Na coordination polymer: Structural features and catalytic activity for the mild peroxidative oxidation of cycloalkanes in acid‐free medium. Wiley Online Library.
  • Kirthan, B., Prabhakara, M., Naik, H. B., Nayak, P. A., & Naik, E. I. (2020). Synthesis, characterization, DNA interaction and anti-bacterial studies of Cu (ii), Co (ii) and Ni (ii) metal complexes containing azo-dye ligand. Chemical Data Collections, 29, 100506. https://doi.org/10.1016/j.cdc.2020.100506
  • Koetsier, G., & Cantor, E. (2019). A practical guide to analyzing nucleic acid concentration and purity with microvolume spectrophotometers (pp. 1–8). New England Biolabs Inc.
  • Kou, S. B., Zhou, K. L., Lin, Z. Y., Lou, Y. Y., Wang, B. L., Shi, J. H., & Liu, Y. X. (2022). Investigation of binding characteristics of ritonavir with calf thymus DNA with the help of spectroscopic techniques and molecular simulation. Journal of Biomolecular Structure & Dynamics, 40(7), 2908–2916. https://doi.org/10.1080/07391102.2020.1844057
  • Lakowicz, J. R., & Lakowicz, J. R. (2000). Principles of Fluorescence Spectroscopy. Boston, MA: Springer. https://doi.org/10.1007/978-0-387-46312-4_2
  • Linder, M. C., & Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. The American Journal of Clinical Nutrition, 63, 797S–811S. https://doi.org/10.1093/ajcn/63.5.797
  • Manikandamathavan, V. M., Rajapandian, V., Freddy, A. J., Weyhermüller, T., Subramanian, V., & Nair, B. U. (2012). Effect of coordinated ligands on antiproliferative activity and DNA cleavage property of three mononuclear Cu (II)-terpyridine complexes. European Journal of Medicinal Chemistry, 57, 449–458. https://doi.org/10.1016/j.ejmech.2012.06.039
  • Mansouri‐Torshizi, H., Saeidifar, M., Rezaei‐Behbehani, G., Divsalar, A., & Saboury, A. (2010). DNA binding studies and cytotoxicity of ethylenediamine 8‐hydroxyquinolinato palladium (II) chloride. Journal of the Chinese Chemical Society, 57(6), 1299–1308. https://doi.org/10.1002/jccs.201000192
  • Mansouri-Torshizi, H., Zareian-Jahromi, S., Ghahghaei, A., Shahraki, S., Khosravi, F., & Heidari Majd, M. (2018). Palladium (II) complexes of biorelevant ligands. Synthesis, structures, cytotoxicity and rich DNA/HSA interaction studies. Journal of Biomolecular Structure & Dynamics, 36(11), 2787–2806. https://doi.org/10.1080/07391102.2017.1372309
  • McGibbon, M., Money-Kyrle, S., Blay, V., & Houston, D. R. (2023). SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation. Journal of Advanced Research, 46, 135–147. https://doi.org/10.1016/j.jare.2022.07.001
  • McGivern, T., Afsharpour, S., & Marmion, C. (2018). Copper complexes as artificial DNA metallonucleases: From Sigman’s reagent to next generation anti-cancer agent? Inorganica Chimica Acta, 472, 12–39. https://doi.org/10.1016/j.ica.2017.08.043
  • McKinnon, J. J., Jayatilaka, D., & Spackman, M. A. (2007). Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications (Cambridge, England), (37), 3814–3816. https://doi.org/10.1039/b704980c
  • McKinnon, J. J., Mitchell, A. S., & Spackman, M. A. (1998). Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. Chemistry - A European Journal, 4(11), 2136–2141. https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G
  • McKinnon, J. J., Spackman, M. A., & Mitchell, A. S. (2004). Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallographica Section B, Structural Science, 60(Pt 6), 627–668. https://doi.org/10.1107/S0108768104020300
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mukherjee, T., Sen, B., Zangrando, E., Hundal, G., Chattopadhyay, B., & Chattopadhyay, P. (2013). Palladium (II) and platinum (II) complexes of deprotonated N, N′-bis (2-pyridinecarboxamide)-1, 2-benzene: Synthesis, structural characterization and binding interactions with DNA and BSA. Inorganica Chimica Acta, 406(2013), 176–183. https://doi.org/10.1016/j.ica.2013.04.033
  • Ndagi, U., Mhlongo, N., & Soliman, M. E. (2017). Metal complexes in cancer therapy–an update from drug design perspective. Drug Design, Development and Therapy, 11, 599–616. https://doi.org/10.2147/DDDT.S119488
  • Nongonierma, A. B., Mooney, C., Shields, D. C., & FitzGerald, R. J. (2013). Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chemistry, 141(1), 644–653. https://doi.org/10.1016/j.foodchem.2013.02.115
  • Oda, M., & Nakamura, H. (2000). Thermodynamic and kinetic analyses for understanding sequence‐specific DNA recognition. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 5(5), 319–326. https://doi.org/10.1046/j.1365-2443.2000.00335.x
  • Ponder, J. W., & Case, D. A. (2003). Force fields for protein simulations, advances in protein chemistry (pp. 27–85). Academic Press.
  • Pyle, A., Rehmann, J., Meshoyrer, R., Kumar, C., Turro, N., & Barton, J. K. (1989). Mixed-ligand complexes of ruthenium (II): Factors governing binding to DNA. Journal of the American Chemical Society, 111(8), 3051–3058. https://doi.org/10.1021/ja00190a046
  • Reed, C. J., & Douglas, K. T. (1989). Single-strand cleavage of DNA by Cu (II) and thiols: A powerful chemical DNA-cleaving system. Biochemical and Biophysical Research Communications, 162(3), 1111–1117. https://doi.org/10.1016/0006-291x(89)90788-2
  • Saikia, S., & Bordoloi, M. (2019). Molecular docking: Challenges, advances and its use in drug discovery perspective. Current Drug Targets, 20(5), 501–521. https://doi.org/10.2174/1389450119666181022153016
  • Shahraki, S., Heidari, A., Mirzaei, H., Saeidifar, M., Ahmadinasab, N., & Mansouri-Torshizi, H. (2018). Synthesis, characterization, cytotoxicity, DNA binding and computational studies of an anionic palladium (II) complex derived from 8-hydroxyquinoline and 1, 1-cyclobutanedicarboxylate. Journal of the Iranian Chemical Society, 15(3), 697–709. https://doi.org/10.1007/s13738-017-1269-8
  • Sigman, D., Dr, G., D'aurora, V., & Am, S. (1979). Oxygen-dependent cleavage of DNA by the 1, 10-phenanthroline, cuprous complex. Inhibition of Escherichia coli DNA Polymerase, I. Journal of Biological Chemistry, 254, 12269–12272. https://doi.org/10.1016/S0021-9258(19)86305-6
  • Silvestri, A., Barone, G., Ruisi, G., Anselmo, D., Riela, S., & Liveri, V. T. (2007). The interaction of native DNA with Zn (II) and Cu (II) complexes of 5-triethyl ammonium methyl salicylidene orto-phenylendiimine. Journal of Inorganic Biochemistry, 101(5), 841–848. https://doi.org/10.1016/j.jinorgbio.2007.01.017
  • Siman, L., Carrasco, I., da Silva, J., de Oliveira, M., Rocha, M., & Mesquita, O. (2012). Quantitative assessment of the interplay between DNA elasticity and cooperative binding of ligands. Physical Review Letters, 109(24), 248103. https://doi.org/10.1103/PhysRevLett.109.248103
  • Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19–32. https://doi.org/10.1039/B818330A
  • Sudhamani, C., Naik, H. B., Naik, T. R., & Prabhakara, M. (2009). Synthesis, DNA binding and cleavage studies of Ni (II) complexes with fused aromatic N-containing ligands. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 72(3), 643–647. https://doi.org/10.1016/j.saa.2008.11.025
  • Tisato, F., Marzano, C., Porchia, M., Pellei, M., & Santini, C. (2010). Copper in diseases and treatments, and copper‐based anticancer strategies. Medicinal Research Reviews, 30(4), 708–749. https://doi.org/10.1002/med.20174
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tu, C., Shao, Y., Gan, N., Xu, Q., & Guo, Z. (2004). Oxidative DNA strand scission induced by a trinuclear copper (II) complex. Inorganic Chemistry, 43(15), 4761–4766. https://doi.org/10.1021/ic049731g
  • Tyagi, G., Charak, S., & Mehrotra, R. (2012). Binding of an indole alkaloid, vinblastine to double stranded DNA: A spectroscopic insight in to nature and strength of interaction. Journal of Photochemistry and Photobiology B, Biology, 108, 48–52. https://doi.org/10.1016/j.jphotobiol.2011.12.009
  • Vlassov, V., Vlassov, A., & Zenkova, M. (2004). Artificial nucleases nucleic acids and molecular biology. Artificial nucleases, nucleic acids, and molecular biology (pp. 49–60). Springer.
  • Wang, J. T., Xia, Q., Zheng, X. H., Chen, H. Y., Chao, H., Mao, Z. W., & Ji, L. N. (2010). An effective approach to artificial nucleases using copper (II) complexes bearing nucleobases. Dalton Transactions (Cambridge, England: 2003), 39(8), 2128–2136. https://doi.org/10.1039/b915392f
  • Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D., & Spackman, M. (2012). Crystal explorer 3.0. The University of Western Australia.
  • Yenikaya, C., Büyükkidan, N., Sari, M., Keşli, R., Ilkimen, H., Bülbül, M., & Büyükgüngör, O. (2011). Synthesis, characterization, and biological evaluation of Cu (II) complexes with the proton transfer salt of 2, 6-pyridinedicarboxylic acid and 2-amino-4-methylpyridine. Journal of Coordination Chemistry, 64(19), 3353–3365. https://doi.org/10.1080/00958972.2011.620608
  • Yilmaz, V. T., Icsel, C., Turgut, O. R., Aygun, M., Erkisa, M., Turkdemir, M. H., & Ulukaya, E. (2018). Synthesis, structures and anticancer potentials of platinum (II) saccharinate complexes of tertiary phosphines with phenyl and cyclohexyl groups targeting mitochondria and DNA. European Journal of Medicinal Chemistry, 155, 609–622. https://doi.org/10.1016/j.ejmech.2018.06.035
  • Zhang, G., Fu, P., & Pan, J. (2013). Multispectroscopic studies of paeoniflorin binding to calf thymus DNA in vitro. Journal of Luminescence, 134, 303–309. https://doi.org/10.1016/j.jlumin.2012.08.029
  • Zhang, L. W., Wang, K., & Zhang, X. X. (2007). Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method. Analytica Chimica Acta, 603(1), 101–110. https://doi.org/10.1016/j.aca.2007.09.021
  • Zhang, Q. L., Liu, J. G., Chao, H., Xue, G. Q., & Ji, L. N. (2001). DNA-binding and photocleavage studies of cobalt (III) polypyridyl complexes: [Co (phen) 2IP] 3+ and [Co (phen) 2PIP] 3+. Journal of Inorganic Biochemistry, 83(1), 49–55. https://doi.org/10.1016/s0162-0134(00)00132-x
  • Zhang, X., Li, S., Yang, L., & Fan, C. (2007). Synthesis, characterization of Ag (I), Pd (II) and Pt (II) complexes of a triazine-3-thione and their interactions with bovine serum albumin. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 68(3), 763–770. https://doi.org/10.1016/j.saa.2006.12.058
  • Zheng, L., Meng, J., Jiang, K., Lan, H., Wang, Z., Lin, M., Li, W., Guo, H., Wei, Y., & Mu, Y. (2022). Improving protein–ligand docking and screening accuracies by incorporating a scoring function correction term. Briefings in Bioinformatics, 23(3), https://doi.org/10.1093/bib/bbac051
  • Zhu, P., Zhang, G., Ma, Y., Zhang, Y., Miao, H., & Wu, Y. (2013). Study of DNA interactions with bifenthrin by spectroscopic techniques and molecular modeling. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 112, 7–14. https://doi.org/10.1016/j.saa.2013.04.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.