88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An ensemble computational model for prediction of clathrin protein by coupling machine learning with discrete cosine transform

ORCID Icon, , , , &
Received 09 Oct 2023, Accepted 19 Feb 2024, Published online: 18 Mar 2024

References

  • Adnan, A., Hongya, W., Ali, F., Khalid, M., Alghushairy, O., & Alsini, R. (2023). A bi-layer model for identification of piwiRNA using deep neural learning. Journal of Biomolecular Structure & Dynamics, 1–9. https://doi.org/10.1080/07391102.2023.2243523
  • Ahmad, A., Akbar, S., Hayat, M., Ali, F., Khan, S., & Sohail, M. (2020). Identification of antioxidant proteins using a discriminative intelligent model of k-space amino acid pairs based descriptors incorporating with ensemble feature selection. Biocybernetics and Biomedical Engineering, 42(2), 727–735. https://doi.org/10.1016/j.bbe.2020.10.003
  • Ahmad, A., Akbar, S., Khan, S., Hayat, M., Ali, F., Ahmed, A., & Tahir, M. (2021). Deep-AntiFP: Prediction of antifungal peptides using distinct multi-informative features incorporating with deep neural networks. Chemometrics and Intelligent Laboratory Systems, 208, 104214. https://doi.org/10.1016/j.chemolab.2020.104214
  • Ahmad, A., Akbar, S., Tahir, M., Hayat, M., & Ali, F. (2022a). iAFPs-EnC-GA: Identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approach. Chemometrics and Intelligent Laboratory Systems, 222, 104516. https://doi.org/10.1016/j.chemolab.2022.104516
  • Ahmad, S., Charoenkwan, P., Quinn, M., Moni, A., Hasan, M., Lio, P., & Shoombuatong, W. (2022b). SCORPION is a stacking-based ensemble learning framework for accurate prediction of phage virion proteins. Scientific Reports, 12(1), 4106. https://doi.org/10.1038/s41598-022-08173-5
  • Ahmed, S., Kabir, M., Ali, Z., Arif, M., Ali, F., & Yu, D.-J. (2018). An integrated feature selection algorithm for cancer classification using gene expression data. Combinatorial Chemistry & High Throughput Screening, 21(9), 631–645. https://doi.org/10.2174/1386207322666181220124756
  • Ahmed, S., Kabir, M., Arif, M., Ali, Z., Ali, F., & Swati, Z. (2018). Improving secretory proteins prediction in Mycobacterium tuberculosis using the unbiased dipeptide composition with support vector machine. International Journal of Data Mining and Bioinformatics, 21(3), 212–229. https://doi.org/10.1504/IJDMB.2018.097682
  • Akbar, S., Ahmad, A., Hayat, M., Rehman, A. U., Khan, S., & Ali, F. (2021). iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model. Computers in Biology and Medicine, 137, 104778. https://doi.org/10.1016/j.compbiomed.2021.104778
  • Akbar, S., Ali, H., Ahmad, A., Sarker, M. R., Saeed, A., Salwana, E., Gul, S., Khan, A., & Ali, F. (2023). Prediction of amyloid proteins using embedded evolutionary & ensemble feature selection based descriptors with extreme gradient boosting model. IEEE Access. 11, 39024–39036. https://doi.org/10.1109/ACCESS.2023.3268523
  • Akbar, S., Ali, F., Hayat, M., Ahmad, A., Khan, S., & Gul, S. (2022). Prediction of Antiviral peptides using transform evolutionary & SHAP analysis based descriptors by incorporation with ensemble learning strategy. Chemometrics and Intelligent Laboratory Systems, 230, 104682. https://doi.org/10.1016/j.chemolab.2022.104682
  • Akbar, S., Khan, S., Ali, F., Hayat, M., Qasim, M., & Gul, S. (2020). iHBP-DeepPSSM: Identifying hormone binding proteins using PsePSSM based evolutionary features and deep learning approach. Chemometrics and Intelligent Laboratory Systems, 204, 104103. https://doi.org/10.1016/j.chemolab.2020.104103
  • Akbar, S., Mohamed, H. G., Ali, H., Saeed, A., Khan, A. A., Gul, S., Ahmad, A., Ali, F., Ghadi, Y. Y., & Assam, M. (2023). Identifying neuropeptides via evolutionary and sequential based multi-perspective descriptors by incorporation with ensemble classification strategy. IEEE Access. 11, 49024–49034. https://doi.org/10.1109/ACCESS.2023.3274601
  • Alghushairy, O., Ali, F., Alghamdi, W., Khalid, M., Alsini, R., & Asiry, O. (2023). Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting. Journal of Biomolecular Structure & Dynamics, 1–12. https://doi.org/10.1080/07391102.2023.2269280
  • Ali, F., Ahmed, S., Swati, K., & Akbar, S. (2019). DP-BINDER: Machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information. Journal of Computer-Aided Molecular Design, 33(7), 645–658. https://doi.org/10.1007/s10822-019-00207-x
  • Ali, F., Akbar, S., Ghulam, A., Maher, Z. A., Unar, A., & Talpur, B. (2021). AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information. Computers in Biology and Medicine, 139, 105006. https://doi.org/10.1016/j.compbiomed.2021.105006
  • Ali, F., Alghamdi, W., Almagrabi, A. O., Alghushairy, O., Banjar, A., & Khalid, M. (2023). Deep-AGP: Prediction of angiogenic protein by integrating two-dimensional convolutional neural network with discrete cosine transform. International Journal of Biological Macromolecules, 243, 125296. https://doi.org/10.1016/j.ijbiomac.2023.125296
  • Ali, F., Arif, M., Khan, Z. U., Kabir, M., Ahmed, S., & Yu, D.-J. (2020). SDBP-Pred: Prediction of single-stranded and double-stranded DNA-binding proteins by extending consensus sequence and K-segmentation strategies into PSSM. Analytical Biochemistry, 589, 113494. https://doi.org/10.1016/j.ab.2019.113494
  • Ali, F., Barukab, O., Gadicha, A. B., Patil, S., Alghushairy, O., & Sarhan, Y. (2022). DBP-iDWT: Improving DNA-binding proteins prediction using multi-perspective evolutionary profile and discrete wavelet transform. Computational Intelligence and Neuroscience, 2022, 2987407–2987408. https://doi.org/10.1155/2022/2987407
  • Ali, Farman, Ghulam, Ali, Maher, Zulfikar Ahmed, Khan, Muhammad Asif, Khan, Sher Afzal, Hongya, Wang, Adnan, (2022). Deep-PCL: A deep learning model for prediction of cancerlectins and non cancerlectins using optimized integrated features. Chemometrics and Intelligent Laboratory Systems, 221, 104484. https://doi.org/10.1016/j.chemolab.2021.104484
  • Ali, F., & Hayat, M. (2015). Classification of membrane protein types using voting feature interval in combination with Chou's pseudo amino acid composition. Journal of Theoretical Biology, 384, 78–83. https://doi.org/10.1016/j.jtbi.2015.07.034
  • Ali, F., & Hayat, M. (2016). Machine learning approaches for discrimination of Extracellular Matrix proteins using hybrid feature space. Journal of Theoretical Biology, 403, 30–37. https://doi.org/10.1016/j.jtbi.2016.05.011
  • Ali, F., Kabir, M., Arif, M., Swati, K., Khan, U., Ullah, M., & Yu, D.-J. (2018). DBPPred-PDSD: Machine learning approach for prediction of DNA-binding proteins using discrete wavelet transform and optimized integrated features space. Chemometrics and Intelligent Laboratory Systems, 182, 21–30. https://doi.org/10.1016/j.chemolab.2018.08.013
  • Ali, F., Kumar, H., Patil, S., Ahmad, A., Babour, A., & Daud, A. (2022). Deep-GHBP: Improving prediction of growth hormone-binding proteins using deep learning model. Biomedical Signal Processing and Control, 78, 103856. https://doi.org/10.1016/j.bspc.2022.103856
  • Ali, F., Kumar, H., Patil, S., Ahmed, A., Banjar, A., & Daud, A. (2022). DBP-DeepCNN: Prediction of DNA-binding proteins using wavelet-based denoising and deep learning. Chemometrics and Intelligent Laboratory Systems, 229, 104639. https://doi.org/10.1016/j.chemolab.2022.104639
  • Ali, F., Kumar, H., Patil, S., Kotecha, K., Banjar, A., & Daud, A. (2022). Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light extreme gradient boosting. Computers in Biology and Medicine, 145, 105533. https://doi.org/10.1016/j.compbiomed.2022.105533
  • Arif, M., Ahmad, S., Ali, F., Fang, G., Li, M., & Yu, D.-J. (2020a). TargetCPP: Accurate prediction of cell-penetrating peptides from optimized multi-scale features using gradient boost decision tree. Journal of Computer-Aided Molecular Design, 34(8), 841–856. https://doi.org/10.1007/s10822-020-00307-z
  • Arif, M., Ali, F., Ahmad, S., Kabir, M., Ali, Z., & Hayat, M. (2020b). Pred-BVP-Unb: Fast prediction of bacteriophage Virion proteins using un-biased multi-perspective properties with recursive feature elimination. Genomics, 112(2), 1565–1574. https://doi.org/10.1016/j.ygeno.2019.09.006
  • Banjar, A., Ali, F., Alghushairy, O., & Daud, A. (2022). iDBP-PBMD: A machine learning model for detection of DNA-binding proteins by extending compression techniques into evolutionary profile. Chemometrics and Intelligent Laboratory Systems, 231, 104697. https://doi.org/10.1016/j.chemolab.2022.104697
  • Barukab, O., Ali, F., Alghamdi, W., Bassam, Y., & Khan, S. A. (2022). DBP-CNN: Deep learning-based prediction of DNA-binding proteins by coupling discrete cosine transform with two-dimensional convolutional neural network. Expert Systems with Applications, 197, 116729. https://doi.org/10.1016/j.eswa.2022.116729
  • Barukab, O., Ali, F., & Khan, S. A. (2021). DBP-GAPred: An intelligent method for prediction of DNA-binding proteins types by enhanced evolutionary profile features with ensemble learning. Journal of Bioinformatics and Computational Biology, 19(4), 2150018. https://doi.org/10.1142/S0219720021500189
  • Brownlee, J. (2020). Gradient boosting with scikit-learn, xgboost, lightgbm, and catboost. Machine Learning Mastery, IEEE Access, 3222883 https://doi.org/10.1109/ACCESS.2022.3222883
  • Caballero-Díaz, D., Bertran, E., Peñuelas-Haro, I., Moreno-Càceres, J., Malfettone, A., López-Luque, J., Addante, A., Herrera, B., Sánchez, A., Alay, A., Solé, X., Serrano, T., Ramos, E., & Fabregat, I. (2020). Clathrin switches transforming growth factor-β role to pro-tumorigenic in liver cancer. Journal of Hepatology, 72(1), 125–134. https://doi.org/10.1016/j.jhep.2019.09.012
  • Chandra, A., Sharma, A., Dehzangi, A., Shigemizu, D., & Tsunoda, T. (2019). Bigram-PGK: Phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix. BMC Molecular and Cell Biology, 20(Suppl 2), 57. https://doi.org/10.1016/bmn.mol.2022.104697
  • Charoenkwan, P., Ahmed, S., Nantasenamat, C., Quinn, J. M., Moni, M. A., Lio’, P., & Shoombuatong, W. (2022). AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning. Scientific Reports, 12(1), 7697. https://doi.org/10.1038/s41598-022-11897-z
  • Charoenkwan, P., Schaduangrat, N., Moni, M. A., Lio’, P., Manavalan, B., & Shoombuatong, W. (2022). SAPPHIRE: A stacking-based ensemble learning framework for accurate prediction of thermophilic proteins. Computers in Biology and Medicine, 146, 105704. https://doi.org/10.1016/j.compbiomed.2022.105704
  • Chen, X., Irani, N. G., & Friml, J. (2011). Clathrin-mediated endocytosis: The gateway into plant cells. Current Opinion in Plant Biology, 14(6), 674–682. https://doi.org/10.3389/fpls.2019.00873
  • Dehzangi, A., López, Y., Lal, S. P., Taherzadeh, G., Michaelson, J., Sattar, A., Tsunoda, T., & Sharma, A. (2017). PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction. Journal of Theoretical Biology, 425, 97–102. https://doi.org/10.1017/j.jtbi.2015.04.17
  • Fan, L., Hao, H., Xue, Y., Zhang, L., Song, K., Ding, Z., Botella, M. A., Wang, H., & Lin, J. (2013). Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development (Cambridge, England), 140(18), 3826–3837. https://doi.org/10.1242/dev.095711
  • Ghulam, A., Memon, M., Hyder, M., Maher, Z., Unar, A., Swati, Z., & Farman, A. (2021). Identification of novel protein sequencing SARS CoV-2 coronavirus using machine learning. Bioscience Research, 18, 47–58. https://doi.org/10.1016/j.compbiomed.2021.104359
  • Ghulam, A., Sikander, R., Ali, F., Swati, K., Unar, A., & Talpur, B. (2022b). Accurate prediction of immunoglobulin proteins using machine learning model. Informatics in Medicine Unlocked, 29, 100885. https://doi.org/10.1016/j.imu.2022.100885
  • Ghulam, A., Swati, Z. N. K., Ali, F., Tunio, S., Jabeen, N., & Iqbal, N. (2023). DeepImmuno-PSSM: Identification of Immunoglobulin based on deep learning and PSSM-Profiles. VAWKUM Transactions on Computer Sciences, 11(1), 54–66. https://doi.org/10.21015/vtcs.v11i1.1396
  • Green, M. R., & Sambrook, J. (2019). Agarose gel electrophoresis. Cold Spring Harbor Protocols, 2019(1), pdb.prot100404. https://doi.org/10.1101/pdb.prot100404
  • Katoh, Y., Imakagura, H., Futatsumori, M., & Nakayama, K. (2006). Recruitment of clathrin onto endosomes by the Tom1–Tollip complex. Biochemical and Biophysical Research Communications, 341(1), 143–149. https://doi.org/10.1016/j.bbrc.2005.12.156
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3149–3158. https://doi.org/10.1145/3633514
  • Khan, Z. U., Ali, F., Ahmad, I., Hayat, M., & Pi, D. (2019). iPredCNC: Computational prediction model for cancerlectins and non-cancerlectins using novel cascade features subset selection. Chemometrics and Intelligent Laboratory Systems, 195, 103876. https://doi.org/10.1016/j.chemolab.2019.103876
  • Khan, Z. U., Ali, F., Khan, I. A., Hussain, Y., & Pi, D. (2019). iRSpot-SPI: Deep learning-based recombination spots prediction by incorporating secondary sequence information coupled with physio-chemical properties via Chou’s 5-step rule and pseudo components. Chemometrics and Intelligent Laboratory Systems, 189, 169–180. https://doi.org/10.1016/j.chemolab.2019.05.003
  • Khan, I. A., Pi, D., Khan, N., Khan, Z. U., Hussain, Y., Nawaz, A., & Ali, F. (2021). A privacy-conserving framework based intrusion detection method for detecting and recognizing malicious behaviours in cyber-physical power networks. Applied Intelligence, 51(10), 7306–7321. https://doi.org/10.1007/s10489-021-02222-8
  • Khan, Z. U., Pi, D., Yao, S., Nawaz, A., Ali, F., & Ali, S. (2021). piEnPred: A bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm. Frontiers of Computer Science, 15(6), 1–11. https://doi.org/10.1007/s11704-020-9504-3
  • Khan, A., Uddin, J., Ali, F., Ahmad, A., Alghushairy, O., Banjar, A., & Daud, A. (2022). Prediction of antifreeze proteins using machine learning. Scientific Reports, 12(1), 20672. https://doi.org/10.1038/s41598-022-24501-1
  • Khan, A., Uddin, J., Ali, F., Banjar, A., & Daud, A. (2022). Comparative analysis of the existing methods for prediction of antifreeze proteins. Chemometrics and Intelligent Laboratory Systems, 232, 104729. https://doi.org/10.1016/j.chemolab.2022.104729
  • Khan, A., Uddin, J., Ali, F., Kumar, H., Alghamdi, W., & Ahmad, A. (2023). AFP-SPTS: An accurate prediction of antifreeze proteins using sequential and pseudo-tri-slicing evolutionary features with an extremely randomized tree. Journal of Chemical Information and Modeling, 63(3), 826–834. https://doi.org/10.1021/acs.jcim.2c01417
  • Konopka, C. A., Backues, S. K., & Bednarek, S. (2008). Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. The Plant Cell, 20(5), 1363–1380. https://doi.org/10.1105/tpc.108.059428
  • Le, N. Q. K., Huynh, T.-T., Yapp, E. K. Y., & Yeh, H.-Y. (2019). Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles. Computer Methods and Programs in Biomedicine, 177, 81–88. https://doi.org/10.1016/j.cmpb.2019.05.016
  • Li, W., & Godzik, B. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England), 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158
  • Mayor, S., Parton, R. G., & Donaldson, J. (2014). Clathrin-independent pathways of endocytosis. Cold Spring Harbor Perspectives in Biology, 6(6), a016758–a016758. https://doi.org/10.1101/cshperspect.a016758
  • Medeiros, A. T., Bubacco, L., & Morgan, J. (2018). Impacts of increased α-synuclein on clathrin-mediated endocytosis at synapses: Implications for neurodegenerative diseases. Neuroscience, 13(4), 647. https://doi.org/10.3389/fnins.2021.639414
  • Rahu, S., Ghulam, A., Farman, A., Talpur, D. B., Talpur, M. S. H., Saba, E., Maher, Z. A., & Tunio, S. (2022). UBI-XGB: Identification of ubiquitin proteins using machine learning model. Journal of Mountain Area Research, 8, 14–26. https://doi.org/10.53874/jmar.v8i0.167
  • Sikander, R., Ghulam, A., & Ali, F. (2022). XGB-DrugPred: Computational prediction of druggable proteins using extreme gradient boosting and optimized features set. Scientific Reports, 12(1), 5505. https://doi.org/10.1038/s41598-022-09484-3
  • Sorkhi, A. G., Pirgazi, J., & Ghasemi, R. (2022). A hybrid feature extraction scheme for efficient malonylation site prediction. Scientific Reports, 12(1), 5756. https://doi.org/10.1038/s41598-022-08555-9
  • Swati, Z. N. K., Zhao, Q., Kabir, M., Ali, F., Ali, Z., Ahmed, S., & Lu, J. (2019). Brain tumor classification for MR images using transfer learning and fine-tuning. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 75, 34–46. https://doi.org/10.1016/j.compmedimag.2019.05.001
  • Ullah, M., Iltaf, A., Hou, Q., Ali, F., & Liu, C. (2018). A foreground extraction approach using convolutional neural network with graph cut [Paper presentation].2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), 40–44. http://doi.org/10.1109/ICIVC.2018.8492887
  • Ungewickell, E. J., & Hinrichsen, L. (2007). Endocytosis: Clathrin-mediated membrane budding. Current Opinion in Cell Biology, 19(4), 417–425. https://doi.org/10.1016/j.ceb.2007.05.003
  • Wu, F., & Yao, P. J. (2009). Clathrin-mediated endocytosis and Alzheimer’s disease: An update. Ageing Research Reviews, 8(3), 147–149. https://doi.org/10.1016/j.arr.2009.03.002
  • Xiao, D., Yao, J., Gao, X., & Zhu, K. (2023). Clathrin‐dependent endocytosis plays a critical role in larval and pupal development, and female oocyte production in the red flour beetle. Pest Management Science, 79(5), 1731–1742. https://doi.org/10.1002/ps.7348
  • Ye, A. (2020). XGBoost, LightGBM, and Other Kaggle Competition Favorites. Towards Data Science, 71, 9087. https://doi.org/10.1145/3506651.3506659
  • Yoshida, A., Sakai, N., Uekusa, Y., Imaoka, Y., Itagaki, Y., Suzuki, Y., & Yoshimura, B. (2018). Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis. PLoS Biology, 16(5), e2004786. https://doi.org/10.1371/journal.pbio.2004786
  • Yuan, S.-S., Gao, D., Xie, X.-Q., Ma, C.-Y., Su, W., Zhang, Z.-Y., Zheng, Y., & Ding, H. (2022). IBPred: A sequence-based predictor for identifying ion binding protein in phage. Computational and Structural Biotechnology Journal, 20, 4942–4951. https://doi.org/10.1016/j.csbj.2022.08.053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.