107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Conformational analysis of lipid membrane mimetics modified with Aβ42 peptide by Raman spectroscopy and computer simulations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 20 Dec 2023, Accepted 08 Mar 2024, Published online: 23 Mar 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Allen, M. P., & Tildesley, D. J. (1989). Computer Simulation of Liquids (Oxford Science Publications) SE - Oxford science publications. In Oxford University Press (Vol. 45).
  • Barron, L. D. (2004). Molecular light scattering and optical activity. In Molecular light scattering and optical activity. https://doi.org/10.1017/cbo9780511535468
  • Becke, A. D. (1993). A new mixing of Hartree-Fock and local density-functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Berhanu, W. M., Mikhailov, I. A., & Masunov, A. E. (2010). Are density functional theory predictions of the Raman spectra accurate enough to distinguish conformational transitions during amyloid formation? Journal of Molecular Modeling, 16(6), 1093–1101. https://doi.org/10.1007/s00894-009-0610-2
  • Berkowitz, M. L. (2009). Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochimica Et Biophysica Acta, 1788(1), 86–96. https://doi.org/10.1016/j.bbamem.2008.09.009
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bieler, N. S., Haag, M. P., Jacob, C. R., & Reiher, M. (2011). Analysis of the Cartesian Tensor Transfer Method for calculating vibrational spectra of polypeptides. Journal of Chemical Theory and Computation, 7(6), 1867–1881. https://doi.org/10.1021/ct2001478
  • Bokvist, M., Lindström, F., Watts, A., & Gröbner, G. (2004). Two types of Alzheimer’s b-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. Journal of Molecular Biology, 335(4), 1039–1049. https://doi.org/10.1016/j.jmb.2003.11.046
  • Born, M., & Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Annalen Der Physik, 389(20), 457–484. https://doi.org/10.1002/andp.19273892002
  • Bouř, P., & Keiderling, T. A. (2002). Partial optimization of molecular geometry in normal coordinates and use as a tool for simulation of vibrational spectra. The Journal of Chemical Physics, 117(9), 4126–4132. https://doi.org/10.1063/1.1498468
  • Bouř, P., Kapitán, J., & Baumruk, V. (2001). Simulation of the Raman optical activity of L-alanyl-L-alanine. The Journal of Physical Chemistry A, 105(26), 6362–6368. https://doi.org/10.1021/jp002572b
  • Bouř, P., Sopková, J., BednáRová, L., Maloň, P., & Keiderling, T. A. (1997). Transfer of molecular property tensors in cartesian coordinates: A new algorithm for simulation of vibrational spectra. Journal of Computational Chemistry, 18(5), 646–659. https://doi.org/10.1002/(SICI)1096-987X(19970415)18:5
  • Bouř, P., ZáRuba, K., Urbanová, M., Setnička, V., Matějka, P., Fiedler, Z., KráL, V., & Volka, K. (2000). Vibrational circular dichroism of tetraphenylporphyrin in peptide complexes? A computational study. Chirality, 12(4), 191–198. https://doi.org/10.1002/(SICI)1520-636X(2000)12:4
  • Bunaciu, A. A., Aboul-Enein, H. Y., & Hoang, V. D. (2015). Raman spectroscopy for protein analysis. In Applied Spectroscopy Reviews, 50(5), 377–386. https://doi.org/10.1080/05704928.2014.990463
  • Bunow, M. R., & Levin, I. W. (1977). Raman spectra and vibrational assignments for deuterated membrane lipids. 1,2-Dipalmitoyl phosphatidylcholine-d9 and -d62. Biochimica Et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 489(2), 191–206. https://doi.org/10.1016/0005-2760(77)90138-2
  • Burke, K. (2012). Perspective on density functional theory. The Journal of Chemical Physics, 136(15), 150901. https://doi.org/10.1063/1.4704546
  • Bush, S. F., Adams, R. G., & Levin, I. W. (1980). Structural reorganizations in lipid bilayer systems: Effect of hydration and sterol addition on Raman spectra of dipalmitoylphosphatidylcholine multilayers. Biochemistry, 19(19), 4429–4436. https://doi.org/10.1021/bi00560a008
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. In Journal of computational chemistry (Vol. 26, Issue 16, pp. 1668–1688). John Wiley & Sons, Ltd. https://doi.org/10.1002/jcc.20290
  • Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28
  • Chorev, D. S., & Robinson, C. V. (2020). The importance of the membrane for biophysical measurements. Nature Chemical Biology, 16(12), 1285–1292. https://doi.org/10.1038/s41589-020-0574-1
  • Cohen, A. S., & Calkins, E. (1959). Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature, 183(4669), 1202–1203. https://doi.org/10.1038/1831202a0
  • Cole, D. J., & Hine, N. D. M. (2016). Applications of large-scale density functional theory in biology. Journal of Physics: Condensed Matter, 28(39), 393001. https://doi.org/10.1088/0953-8984/28/39/393001
  • Collins, M. A., & Bettens, R. P. A. (2015). Energy-based molecular fragmentation methods. Chemical Reviews, 115(12), 5607–5642. https://doi.org/10.1021/cr500455b
  • Craig, A. F., Clark, E. E., Sahu, I. D., Zhang, R., Frantz, N. D., Al-Abdul-Wahid, M. S., Dabney-Smith, C., Konkolewicz, D., & Lorigan, G. A. (2016). Tuning the size of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for biophysical studies. Biochimica Et Biophysica Acta, 1858(11), 2931–2939. https://doi.org/10.1016/j.bbamem.2016.08.004
  • Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D'Ursi, A. M., Temussi, P. A., & Picone, D. (2002). Solution structure of the Alzheimer amyloid β-peptide (1-42) in an apolar microenvironment: Similarity with a virus fusion domain. European Journal of Biochemistry, 269(22), 5642–5648. https://doi.org/10.1046/j.1432-1033.2002.03271.x
  • D’Imprima, E., Floris, D., Joppe, M., Sánchez, R., Grininger, M., & Kühlbrandt, M. (2019). Protein denaturation at the air-water interface and how to prevent it. eLife, 8, e42747. https://doi.org/10.7554/eLife.42747
  • DeLano, W. L. (2020). The PyMOL Molecular Graphics System, Version 2.3. In Schrödinger LLC.
  • Dörr, J. M., Scheidelaar, S., Koorengevel, M. C., Dominguez, J. J., Schäfer, M., van Walree, C. A., & Killian, J. A. (2016). The styrene–maleic acid copolymer: A versatile tool in membrane research. European Biophysics Journal, (45(1), 3–21. https://doi.org/10.1007/s00249-015-1093-y
  • Efremov, R., Nolde, D., Konshina, A., Syrtcev, N., & Arseniev, A. (2012). Peptides and proteins in membranes: What can we learn via computer simulations? Current Medicinal Chemistry, 11(18), 2421–2442. https://doi.org/10.2174/0929867043364496
  • Fasanella, A., Cosentino, K., Beneduci, A., Chidichimo, G., Cazzanelli, E., Barberi, R. C., & Castriota, M. (2018). Thermal structural evolutions of DMPC-water biomimetic systems investigated by Raman Spectroscopy. Biochimica Et Biophysica Acta. Biomembranes, 1860(6), 1253–1258. https://doi.org/10.1016/j.bbamem.2018.02.021
  • Gordon, M. S., Fedorov, D. G., Pruitt, S. R., & Slipchenko, L. V. (2012). Fragmentation methods: A route to accurate calculations on large systems. Chemical Reviews, 112(1), 632–672. https://doi.org/10.1021/cr200093j
  • Grahnen, J. A., Amunson, K. E., & Kubelka, J. (2010). DFT-based simulations of IR amide I′. The Journal of Physical Chemistry. B, 114(40), 13011–13020. https://doi.org/10.1021/jp106639s
  • Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E., & Schulten, K. (2005). Molecular dynamics simulations of proteins in lipid bilayers. Current Opinion in Structural Biology, 15(4), 423–431. https://doi.org/10.1016/j.sbi.2005.07.007
  • Harrison, R. S., Sharpe, P. C., Singh, Y., & Fairlie, D. P. (2007). Amyloid peptides and proteins in review. Reviews of Physiology, Biochemistry and Pharmacology, 159, 1–77.). https://doi.org/10.1007/112_2007_0701
  • Herrmann, C., & Reiher, M. (2006). First-principles approach to vibrational spectroscopy of biomolecules. In Atomistic approaches in modern biology (Vol. 268, pp. 85–132). Springer. https://doi.org/10.1007/128_2006_082
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2016). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Huang, R., Setnicka, V., Etienne, M. A., Kim, J., Kubelka, J., Hammer, R. P., & Keiderling, T. A. (2007). Cross-strand coupling of a β-hairpin peptide stabilized with an Aib-Gly turn studied using isotope-edited IR spectroscopy. Journal of the American Chemical Society, 129(44), 13592–13603. https://doi.org/10.1021/ja0736414
  • Hudecová, J., Kapitán, J., Baumruk, V., Hammer, R. P., Keiderling, T. A., & Bour, P. (2010). Side chain and flexibility contributions to the Raman optical activity spectra of a model cyclic hexapeptide. The Journal of Physical Chemistry. A, 114(28), 7642–7651. https://doi.org/10.1021/jp104744a
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jo, S., Cheng, X., Islam, S. M., Huang, L., Rui, H., Zhu, A., Lee, H. S., Qi, Y., Han, W., Vanommeslaeghe, K., MacKerell, A. D., Roux, B., & Im, W. (2014). CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Advances in Protein Chemistry and Structural Biology, 96, 235–265. https://doi.org/10.1016/bs.apcsb.2014.06.002
  • Jo, S., Kim, T., & Im, W. (2007). Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One, 2(9), e880. https://doi.org/10.1371/journal.pone.0000880
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Jo, S., Lim, J. B., Klauda, J. B., & Im, W. (2009). CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophysical Journal, 97(1), 50–58. https://doi.org/10.1016/j.bpj.2009.04.013
  • Kapitán, J., Baumruk, V., & Bour, P. (2006). Demonstration of the ring conformation in polyproline by the Raman optical activity. Journal of the American Chemical Society, 128(7), 2438–2443. https://doi.org/10.1021/ja057337r
  • Kapitán, J., Zhu, F., Hecht, L., Gardiner, J., Seebach, D., & Barron, L. D. (2008). Solution structures of β peptides from raman optical activity. Angewandte Chemie, 120(34), 6492–6494. https://doi.org/10.1002/ange.200801111
  • Kessler, J., Kapitán, J., & Bouř, P. (2015). First-principles predictions of vibrational raman optical activity of globular proteins. The Journal of Physical Chemistry Letters, 6(16), 3314–3319. https://doi.org/10.1021/acs.jpclett.5b01500
  • Khandelia, H., Ipsen, J. H., & Mouritsen, O. G. (2008). The impact of peptides on lipid membranes. Biochimica Et Biophysica Acta, (1778(7-8), 1528–1536. https://doi.org/10.1016/j.bbamem.2008.02.009
  • Killian, J. A., & Nyholm, T. K. (2006). Peptides in lipid bilayers: The power of simple models. Current Opinion in Structural Biology, 16(4), 473–479. https://doi.org/10.1016/j.sbi.2006.06.007
  • Klamt, A., Jonas, V., Bürger, T., & Lohrenz, J. C. W. (1998). Refinement and parametrization of COSMO-RS. The Journal of Physical Chemistry A, 102(26), 5074–5085. https://doi.org/10.1021/jp980017s
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133
  • Kubelka, J., & Keiderling, T. A. (2001). Ab initio calculation of amide carbonyl stretch vibrational frequencies in solution with modified basis sets. 1. JV-methyl acetamide. The Journal of Physical Chemistry A, 105(48), 10922–10928. https://doi.org/10.1021/jp013203y
  • Kubelka, J., & Keiderling, T. A. (2001). The anomalous infrared amide I intensity distribution in 13C isotopically labeled peptide β-sheets comes from extended, multiple-stranded structures. An ab initio study. Journal of the American Chemical Society, 123(25), 6142–6150. https://doi.org/10.1021/ja010270x
  • Leach, A. R. (2001). Molecular modeling: Principles and applications (2nd ed., pp. 234–247). Prentice Hall.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Majeed, S., Ahmad, A. B., Sehar, U., & Georgieva, E. R. (2021). Lipid membrane mimetics in functional and structural studies of integral membrane proteins. In. Membranes, 11(9), 685. https://doi.org/10.3390/membranes11090685
  • Marino, T., Russo, N., Toscano, M., & Pavelka, M. (2010). On the metal ion (Zn2+, Cu2+) coordination with beta-amyloid peptide: DFT computational study. Interdisciplinary Sciences, Computational Life Sciences, 2(1), 57–69. https://doi.org/10.1007/s12539-010-0086-x
  • Mazaleyrat, J. P., Wright, K., Gaucher, A., Wakselman, M., Oancea, S., Formaggio, F., Toniolo, C., Setnička, V., Kapitán, J., & Keiderling, T. A. (2003). Synthesis and conformational study of homo-peptides based on (S)-Bin, a C2-symmetric binaphthyl-derived Cα,α-disubstituted glycine with only axial chirality. Tetrahedron: Asymmetry, 14(13), 1879–1893. https://doi.org/10.1016/S0957-4166(03)00285-4
  • Mennucci, B., Cappelli, C., Cammi, R., & Tomasi, J. (2011). Modeling solvent effects on chiroptical properties. In Chirality, 23(9), 717–729. https://doi.org/10.1002/chir.20984
  • Mensch, C., Bultinck, P., & Johannessen, C. (2019). The effect of protein backbone hydration on the amide vibrations in Raman and Raman optical activity spectra. Physical Chemistry Chemical Physics: PCCP, 21(4), 1988–2005. https://doi.org/10.1039/c8cp06423g
  • Merrick, J. P., Moran, D., & Radom, L. (2007). An evaluation of harmonic vibrational frequency scale factors. The Journal of Physical Chemistry. A, 111(45), 11683–11700. https://doi.org/10.1021/jp073974n
  • Mezei, M., & Jedlovszky, P. (2007). Statistical thermodynamics through computer simulation to characterize phospholipid interactions in membranes (pp. 127–144). Humana Press. https://doi.org/10.1007/978-1-59745-519-0_9
  • Nafie, L. A. (2011). Vibrational Optical Activity: Principles and Applications. In Vibrational Optical Activity: Principles and Applications. https://doi.org/10.1002/9781119976516
  • Neese, F. (2012). The ORCA program system. WIREs Computational Molecular Science, 2(1), 73–78. https://doi.org/10.1002/wcms.81
  • Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. (2020). The ORCA quantum chemistry program package. The Journal of Chemical Physics, 152(22) https://doi.org/10.1063/5.0004608
  • Niu, Z., Zhang, Z., Zhao, W., & Yang, J. (2018). Interactions between amyloid β peptide and lipid membranes. Biochimica Et Biophysica Acta. Biomembranes, 1860(9), 1663–1669. https://doi.org/10.1016/j.bbamem.2018.04.004
  • Parr, R. G. (1980). Density functional theory of atoms and molecules. In Horizons of quantum chemistry (pp. 5–15). https://doi.org/10.1007/978-94-009-9027-2_2
  • Perdew, J. P., Burke, K., & Wang, Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review. B, Condensed Matter, 54(23), 16533–16539. https://doi.org/10.1103/PhysRevB.54.16533
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Picone, P., Nuzzo, D., Giacomazza, D., & Di Carlo, M. (2020). β-Amyloid peptide: The cell compartment multi-faceted interaction in Alzheimer’s disease. Neurotoxicity Research, 37(2), 250–263. https://doi.org/10.1007/s12640-019-00116-9
  • Polavarapu, P. L. (1990). Ab initio vibrational Raman and Raman optical activity spectra. The Journal of Physical Chemistry, 94(21), 8106–8112. https://doi.org/10.1021/j100384a024
  • Poojari, C., Kukol, A., & Strodel, B. (2013). How the amyloid-β peptide and membranes affect each other: An extensive simulation study. Biochimica Et Biophysica Acta, 1828(2), 327–339. https://doi.org/10.1016/j.bbamem.2012.09.001
  • Raghavachari, K., & Saha, A. (2015). Accurate composite and fragment-based quantum chemical models for large molecules. Chemical Reviews, (115(12), 5643–5677. https://doi.org/10.1021/cr500606e
  • Sakono, M., & Zako, T. (2010). Amyloid oligomers: Formation and toxicity of Aβ oligomers. In FEBS Journal, 277(6), 1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x
  • Santoro, A., Grimaldi, M., Buonocore, M., Stillitano, I., & D’Ursi, A. M. (2021). Exploring the early stages of the amyloid aβ(1–42) peptide aggregation process: An NMR study. Pharmaceuticals, 14(8). https://doi.org/10.3390/ph14080732
  • Scott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. The Journal of Physical Chemistry, 100(41), 16502–16513. https://doi.org/10.1021/jp960976r
  • Scott, H. L. (2002). Modeling the lipid component of membranes. Current Opinion in Structural Biology, 12(4), 495–502. https://doi.org/10.1016/S0959-440X(02)00353-6
  • Sebek, J., Kapitán, J., Sebestík, J., Baumruk, V., & Bour, P. (2009). L-alanyl-l-alanine conformational changes induced by pH As monitored by the Raman optical activity spectra. The Journal of Physical Chemistry. A, 113(27), 7760–7768. https://doi.org/10.1021/jp902739r
  • Sholl, D. S., & Steckel, J. A. (2009). Density Functional Theory: A Practical Introduction. In John Wiley and Sons. John Wiley and Sons. https://doi.org/10.1002/9780470447710
  • Sinha, P., Boesch, S. E., Gu, C., Wheeler, R. A., & Wilson, A. K. (2004). Harmonic vibrational frequencies: Scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets. The Journal of Physical Chemistry A, 108(42), 9213–9217. https://doi.org/10.1021/jp048233q
  • Spiker, R. C., & Levin, I. W. (1975). Raman spectra and vibrational assignments for dipalmitoyl phosphatidylcholine and structurally related molecules. Biochimica Et Biophysica Acta, 388(3), 361–373. https://doi.org/10.1016/0005-2760(75)90095-8
  • Stelzmann, R. A., Norman Schnitzlein, H., & Reed Murtagh, F. (1995). An english translation of alzheimer’s 1907 paper, “über eine eigenartige erkankung der hirnrinde". Clinical Anatomy, 8(6), 429–431. https://doi.org/10.1002/ca.980080612
  • Straub, J. E., & Thirumalai, D. (2014). Membrane–protein interactions are key to understanding amyloid formation. The Journal of Physical Chemistry Letters, 5(3), 633–635. https://doi.org/10.1016/j.bbamem.2018.04.004
  • Torii, H., Tatsumi, T., & Tasumi, M. (1998). Effects of hydration on the structure, vibrational wavenumbers, vibrational force field and resonance raman intensities of n-methylacetamide. Journal of Raman Spectroscopy, 29(6), 537–546. https://doi.org/10.1002/(sici)1097-4555(199806)29:6
  • Vargas, C., Arenas, R. C., Frotscher, E., & Keller, S. (2015). Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. Nanoscale, 7(48), 20685–20696. https://doi.org/10.1039/c5nr06353a
  • Vigh, L., Escribá, P. V., Sonnleitner, A., Sonnleitner, M., Piotto, S., Maresca, B., Horváth, I., & Harwood, J. L. (2005). The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Progress in Lipid Research, 44(5), 303–344. https://doi.org/10.1016/j.plipres.2005.08.001
  • Wheatley, M., Charlton, J., Jamshad, M., Routledge, S. J., Bailey, S., La-Borde, P. J., Azam, M. T., Logan, R. T., Bill, R. M., Dafforn, T. R., & Poyner, D. R. (2016). GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): Their nature and potential. Biochemical Society Transactions, 44(2), 619–623. https://doi.org/10.1042/BST20150284
  • Wong, P. T., Schauerte, J. A., Wisser, K. C., Ding, H., Lee, E. L., Steel, D. G., & Gafni, A. (2009). Amyloid-β membrane binding and permeabilization are distinct processes influenced separately by membrane charge and fluidity. Journal of Molecular Biology, 386(1), 81–96. https://doi.org/10.1016/j.jmb.2008.11.060
  • Wu, E. L., Cheng, X., Jo, S., Rui, H., Song, K. C., Dávila-Contreras, E. M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R. M., Klauda, J. B., & Im, W. (2014). CHARMM-GUI membrane builder toward realistic biological membrane simulations. Journal of Computational Chemistry, (35(27), 1997–2004. https://doi.org/10.1002/jcc.23702
  • Yamamoto, S., Kaminský, J., & Bouř, P. (2012). Structure and vibrational motion of insulin from Raman optical activity spectra. Analytical Chemistry, 84(5), 2440–2451. https://doi.org/10.1021/ac2032436
  • Yamamoto, S., Straka, M., Watarai, H., & Bour, P. (2010). Formation and structure of the potassium complex of valinomycin in solution studied by Raman optical activity spectroscopy. Physical Chemistry Chemical Physics: PCCP, 12(36), 11021–11032. https://doi.org/10.1039/c003277h
  • Yamamoto, S., Watarai, H., & Bouř, P. (2011). Monitoring the backbone conformation of valinomycin by raman optical activity. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 12(8), 1509–1518. https://doi.org/10.1002/cphc.201000917
  • Zavatski, S., Bandarenka, H., Hetmańczyk, Ł., Hetmańczyk, J., Vorobyeva, M., Arynbek, Y., Mamatkulov, K., & Arzumanyan, G. (2022). Model phospholipid interaction with cholesterol and melatonin: Raman spectroscopy and density functional theory study. Journal of Raman Spectroscopy, 53(9), 1540–1550. https://doi.org/10.1002/jrs.6409
  • Zhang, R., Sahu, I. D., Liu, L., Osatuke, A., Comer, R. G., Dabney-Smith, C., & Lorigan, G. A. (2015). Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies. Biochimica Et Biophysica Acta, 1848(1 Pt B), 329–333. https://doi.org/10.1016/j.bbamem.2014.05.008
  • Zhu, F., Kapitan, J., Tranter, G. E., Pudney, P. D. A., Isaacs, N. W., Hecht, L., & Barron, L. D. (2008). Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data. Proteins, 70(3), 823–833. https://doi.org/10.1002/prot.21593

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.