159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

New N-(1,3,4-thiadiazole-2-yl)acetamide derivatives as human carbonic anhydrase I and II and acetylcholinesterase inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 19 Sep 2023, Accepted 11 Mar 2024, Published online: 27 Mar 2024

References

  • Abas, M., Bahadur, A., Ashraf, Z., Iqbal, S., Rajoka, M. S. R., Rashid, S. G., Jabeen, E., Iqbal, Z., Abbas, Q., Bais, A., Hassan, M., Liu, G., Feng, K., Lee, S. H., Nawaz, M., & Qayyum, M. A. (2021). Designing novel anticancer sulfonamide based 2, 5-disubstituted-1, 3, 4-thiadiazole derivatives as potential carbonic anhydrase inhibitor. Journal of Molecular Structure, 1246, 131145. https://doi.org/10.1016/j.molstruc.2021.131145
  • Abdel-Hamid, M. K., Abdel-Hafez, A. A., El-Koussi, N. A., Mahfouz, N. M., Innocenti, A., & Supuran, C. T. (2007). Design, synthesis, and docking studies of new 1, 3, 4-thiadiazole-2-thione derivatives with carbonic anhydrase inhibitory activity. Bioorganic & Medicinal Chemistry, 15(22), 6975–6984. https://doi.org/10.1016/j.bmc.2007.07.044
  • Acar Çevik, U., Işık, A., Evren, A., Kapusız, Ö., Gül, Ü., Özkay, Y., & Kaplancıklı, Z. (2022). Synthesis of new benzimidazole derivatives containing 1, 3, 4-thiadiazole: Their in vitro antimicrobial, in silico molecular docking and molecular dynamic simulations studies. SAR and QSAR in Environmental Research, 33(11), 899–914. https://doi.org/10.1080/1062936X.2022.2149620
  • Alterio, V., Di Fiore, A., D'Ambrosio, K., Supuran, C. T., & De Simone, G. (2012). Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chemical Reviews, 112(8), 4421–4468. https://doi.org/10.1021/cr200176r
  • Aouad, M. R., Almehmadi, M. A., Albelwi, F. F., Teleb, M., Tageldin, G. N., Abu-Serie, M. M., Hagar, M., & Rezki, N. (2022). Targeting the interplay between MMP-2, CA II and VEGFR-2 via new sulfonamide-tethered isomeric triazole hybrids; Microwave-assisted synthesis, computational studies and evaluation. Bioorganic Chemistry, 124, 105816. https://doi.org/10.1016/j.bioorg.2022.105816
  • Askin, S., Tahtaci, H., Türkeş, C., Demir, Y., Ece, A., Çiftçi, G. A., & Beydemir, Ş. (2021). Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo [2, 1-b][1, 3, 4] thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorganic Chemistry, 113, 105009. https://doi.org/10.1016/j.bioorg.2021.105009
  • Asseri, A. H., Alam, M. J., Alzahrani, F., Khames, A., Pathan, M. T., Abourehab, M. A. S., Hosawi, S., Ahmed, R., Sultana, S. A., Alam, N. F., Alam, N.-U., Alam, R., Samad, A., Pokhrel, S., Kim, J. K., Ahammad, F., Kim, B., & Tan, S. C. (2022). Toward the identification of natural antiviral drug candidates against merkel cell polyomavirus: Computational drug design approaches. Pharmaceuticals, 15(5), 501. https://doi.org/10.3390/ph15050501
  • Atmaram, U. A., & Roopan, S. M. (2022). Biological activity of oxadiazole and thiadiazole derivatives. Applied Microbiology and Biotechnology, 106(9–10), 3489–3505. https://doi.org/10.1007/s00253-022-11969-0
  • Bassani, D., Pavan, M., Bolcato, G., Sturlese, M., & Moro, S. (2022). Re-exploring the ability of common docking programs to correctly reproduce the binding modes of non-covalent inhibitors of SARS-CoV-2 protease MPRO. Pharmaceuticals, 15(2), 180. https://doi.org/10.3390/ph15020180
  • Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 96(3), 2155–2160. https://doi.org/10.1063/1.462066
  • Bulos, J. A., Guo, R., Wang, Z., DeLessio, M. A., Saven, J. G., & Dmochowski, I. J. (2021). Design of a superpositively charged enzyme: Human carbonic anhydrase II variant with ferritin encapsulation and immobilization. Biochemistry, 60(47), 3596–3609. https://doi.org/10.1021/acs.biochem.1c00515
  • Chen, A. Y., Adamek, R. N., Dick, B. L., Credille, C. V., Morrison, C. N., & Cohen, S. M. (2018). Targeting metalloenzymes for therapeutic intervention. Chemical Reviews, 119(2), 1323–1455. https://doi.org/10.1021/acs.chemrev.8b00201
  • Coşkun, G., Birgül, K., Evren, A. E., Küçükgüzel, ŞG., & Ülgen, M. (2023). In Silico studies and in vitro microsomal metabolism of potent MetAP2 inhibitor and in vivo tumor suppressor for prostate cancer: A thioether-triazole hybrid. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi, 14(1), 10–23. https://doi.org/10.31067/acusaglik.1210129
  • Dawbaa, S., Evren, A. E., Sağlik, B. N., Gundogdu-Karaburun, N., & Karaburun, A. C. (2022). Biological activity evaluation of novel monoamine oxidase inhibitory compounds targeting Parkinson disease. Future Medicinal Chemistry, 14(22), 1663–1679. https://doi.org/10.4155/fmc-2022-0167
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView, version 5. Shawnee Mission: Semichem Inc.
  • Di Fiore, A., De Luca, V., Langella, E., Nocentini, A., Buonanno, M., Monti, S. M., Supuran, C. T., Capasso, C., & De Simone, G. (2022). Biochemical, structural, and computational studies of a γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei. Computational and Structural Biotechnology Journal, 20, 4185–4194. https://doi.org/10.1016/j.csbj.2022.07.033
  • Dokmanić, I., Sikić, M., & Tomić, S. (2008). Metals in proteins: Correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Acta Crystallographica Section D, Biological Crystallography, 64(Pt 3), 257–263. https://doi.org/10.1107/S090744490706595X
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 187(1–3), 10–22. https://doi.org/10.1016/j.cbi.2010.01.042
  • Ekins, S., Mestres, J., & Testa, B. (2007). In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. British Journal of Pharmacology, 152(1), 9–20. https://doi.org/10.1038/sj.bjp.0707305
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Ergena, A., Rajeshwar, Y., & Solomon, G. (2022). Synthesis and diuretic activity of substituted 1, 3, 4-thiadiazoles. Scientifica, 2022, 3011531–3011539. https://doi.org/10.1155/2022/3011531
  • Evren, A. E., Demokrat, N., & Yurttaş, L. (2022). Focusing on the moderately active compound (MAC) in the design and development of strategies to optimize the apoptotic effect by molecular mechanics techniques. European Journal of Life Sciences, 1(3), 118–126. https://doi.org/10.55971/EJLS.1209591
  • Evren, A. E., Karaduman, A. B., Sağlik, B. N., Özkay, Y., & Yurttaş, L. (2022). Investigation of novel quinoline–thiazole derivatives as antimicrobial agents: In Vitro and in silico approaches. ACS Omega, 8(1), 1410–1429. https://doi.org/10.1021/acsomega.2c06871
  • Evren, A. E., Nuha, D., Dawbaa, S., Sağlık, B. N., & Yurttaş, L. (2022). Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors. European Journal of Medicinal Chemistry, 229, 114097. https://doi.org/10.1016/j.ejmech.2021.114097
  • Fu, X., Li, S., Jing, F., Wang, X., Li, B., Zhao, J., Liu, Y., & Chen, B. (2016). Synthesis and biological evaluation of novel 1, 3, 4-thiadiazole derivatives incorporating benzisoselenazolone scaffold as potential antitumor agents. Medicinal Chemistry, 12(7), 631–639. https://doi.org/10.2174/1573406412666160201120806
  • Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science, 218(4574), 747–754. https://doi.org/10.1126/science.218.4574.747
  • Gaussian09, R. A. (2009). 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al (Vol. 121, pp. 150–166). Gaussian. Inc.
  • Gowda, K., Swarup, H. A., Nagarakere, S. C., Rangappa, S., Kanchugarkoppal, R. S., & Kempegowda, M. (2020). Structural studies of 2, 5-disubstituted 1, 3, 4-thiadiazole derivatives from dithioesters under the mild condition: Studies on antioxidant, antimicrobial activities, and molecular docking. Synthetic Communications, 50(10), 1528–1544. https://doi.org/10.1080/00397911.2020.1745843
  • Gregory, D. S., Martin, A. C., Cheetham, J. C., & Rees, A. R. (1993). The prediction and characterization of metal binding sites in proteins. Protein Engineering, 6(1), 29–35. https://doi.org/10.1093/protein/6.1.29
  • Güleç, Ö., Türkeş, C., Arslan, M., Demir, Y., Yeni, Y., Hacımüftüoğlu, A., Ereminsoy, E., Küfrevioğlu, Ö. İ., & Beydemir, Ş. Ş (2022). Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1, 3, 4-oxadiazol structural motif. Molecular Diversity, 26(5), 2825–2845. https://doi.org/10.1007/s11030-022-10422-8
  • Güzel-Akdemir, Ö., Akdemir, A., Karalı, N., & Supuran, C. T. (2015). Discovery of novel isatin-based sulfonamides with potent and selective inhibition of the tumor-associated carbonic anhydrase isoforms IX and XII. Organic & Biomolecular Chemistry, 13(23), 6493–6499. https://doi.org/10.1039/c5ob00688k
  • Güzel, E., Acar Çevik, U., Evren, A. E., Bostancı, H. E., Gül, Ü. D., Kayış, U., Özkay, Y., & Kaplancıklı, Z. A. (2023). Synthesis of benzimidazole-1, 2, 4-triazole derivatives as potential antifungal agents targeting 14α-demethylase. ACS Omega, 8(4), 4369–4384. https://doi.org/10.1021/acsomega.2c07755
  • Jatczak, M., Muylaert, K., De Coen, L. M., Keemink, J., Wuyts, B., Augustijns, P., & Stevens, C. V. (2014). Straightforward entry to pyrido [2, 3-d] pyrimidine-2, 4 (1H, 3H)-diones and their ADME properties. Bioorganic & Medicinal Chemistry, 22(15), 3947–3956. https://doi.org/10.1016/j.bmc.2014.06.009
  • Kakakhan, C., Türkeş, C., Güleç, Ö., Demir, Y., Arslan, M., Özkemahlı, G., & Beydemir, Ş. Ş (2023). Exploration of 1, 2, 3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase. Bioorganic & Medicinal Chemistry, 77, 117111. https://doi.org/10.1016/j.bmc.2022.117111
  • Kalinin, S., Kovalenko, A., Valtari, A., Nocentini, A., Gureev, M., Urtti, A., Korsakov, M., Supuran, C. T., & Krasavin, M. (2022). 5-(Sulfamoyl) thien-2-yl 1, 3-oxazole inhibitors of carbonic anhydrase II with hydrophilic periphery. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1005–1011. https://doi.org/10.1080/14756366.2022.2056733
  • Karaburun, A. Ç., Acar Çevik, U., Osmaniye, D., Sağlık, B. N., Kaya Çavuşoğlu, B., Levent, S., Özkay, Y., Koparal, A. S., Behçet, M., & Kaplancıklı, Z. A. (2018). Synthesis and evaluation of new 1, 3, 4-thiadiazole derivatives as potent antifungal agents. Molecules (Basel, Switzerland), 23(12), 3129. https://doi.org/10.3390/molecules23123129
  • Kasımoğulları, R., Bülbül, M., Arslan, B. S., & Gökçe, B. (2010). Synthesis, characterization and antiglaucoma activity of some novel pyrazole derivatives of 5-amino-1, 3, 4-thiadiazole-2-sulfonamide. European Journal of Medicinal Chemistry, 45(11), 4769–4773. https://doi.org/10.1016/j.ejmech.2010.07.041
  • Khan, F. A. K., Patil, R. H., Shinde, D. B., & Sangshetti, J. N. (2016). Bacterial Peptide deformylase inhibition of cyano substituted biaryl analogs: Synthesis, in vitro biological evaluation, molecular docking study and in silico ADME prediction. Bioorganic & Medicinal Chemistry, 24(16), 3456–3463. https://doi.org/10.1016/j.bmc.2016.05.051
  • Lolak, N., Akocak, S., Durgun, M., Duran, H. E., Necip, A., Türkeş, C., Işık, M., & Beydemir, Ş. (2022). Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Molecular Diversity, 27(4), 1735–1749. https://doi.org/10.1007/s11030-022-10527-0
  • Long, D. D., Frieman, B., Hegde, S. S., Hill, C. M., Jiang, L., Kintz, S., Marquess, D. G., Purkey, H., Shaw, J.-P., Steinfeld, T., Wilson, M. S., & Wrench, K. (2013). A multivalent approach towards linked dual-pharmacology prostaglandin F receptor agonist/carbonic anhydrase-II inhibitors for the treatment of glaucoma. Bioorganic & Medicinal Chemistry Letters, 23(4), 939–943. https://doi.org/10.1016/j.bmcl.2012.12.058
  • Lotfi, S., Rahmani, T., Hatami, M., Pouramiri, B., Kermani, E. T., Rezvannejad, E., Mortazavi, M., Fathi Hafshejani, S., Askari, N., Pourjamali, N., & Zahedifar, M. (2020). Design, synthesis and biological assessment of acridine derivatives containing 1, 3, 4-thiadiazole moiety as novel selective acetylcholinesterase inhibitors. Bioorganic Chemistry, 105, 104457. https://doi.org/10.1016/j.bioorg.2020.104457
  • Luque, F., Orozco, M., Bhadane, P., & Gadre, S. (1993). SCRF calculation of the effect of water on the topology of the molecular electrostatic potential. The Journal of Physical Chemistry, 97(37), 9380–9384. https://doi.org/10.1021/j100139a021
  • Nocentini, A., Supuran, C. T., & Capasso, C. (2021). An overview on the recently discovered iota-carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 1988–1995. https://doi.org/10.1080/14756366.2021.1972995
  • Osmaniye, D., Evren, A. E., Sağlık, B. N., Levent, S., Özkay, Y., & Kaplancıklı, Z. A. (2022). Design, synthesis, biological activity, molecular docking, and molecular dynamics of novel benzimidazole derivatives as potential AChE/MAO‐B dual inhibitors. Archiv Der Pharmazie, 355(3), e2100450. https://doi.org/10.1002/ardp.202100450
  • Osmaniye, D., Türkeş, C., Demir, Y., Özkay, Y., Beydemir, Ş., & Kaplancıklı, Z. A. (2022). Design, synthesis, and biological activity of novel dithiocarbamate‐methylsulfonyl hybrids as carbonic anhydrase inhibitors. Archiv Der Pharmazie, 355(8), e2200132. https://doi.org/10.1002/ardp.202200132
  • Pagnozzi, D., Pala, N., Biosa, G., Dallocchio, R., Dessì, A., Singh, P. K., Rogolino, D., Di Fiore, A., De Simone, G., Supuran, C. T., & Sechi, M. (2022). Interaction studies between carbonic anhydrase and a sulfonamide inhibitor by experimental and theoretical approaches. ACS Medicinal Chemistry Letters, 13(2), 271–277. https://doi.org/10.1021/acsmedchemlett.1c00644
  • Politzer, P., & Murray, J. S. (2002). The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts, 108(3), 134–142. https://doi.org/10.1007/s00214-002-0363-9
  • Rocca, R., Scionti, F., Nadai, M., Moraca, F., Maruca, A., Costa, G., Catalano, R., Juli, G., Di Martino, M. T., Ortuso, F., Alcaro, S., Tagliaferri, P., Tassone, P., Richter, S. N., & Artese, A. (2022). Chromene derivatives as selective TERRA G-quadruplex RNA binders with antiproliferative properties. Pharmaceuticals, 15(5), 548. https://doi.org/10.3390/ph15050548
  • Schrödinger Release. (2020a). Schrödinger release 2020–3, desmond. Schrödinger, LLC.
  • Schrödinger Release. (2020b). Schrödinger Release 2020–3, glide. Schrödinger, LLC.
  • Schrödinger Release. (2020c). Schrödinger release. 2020–3: LigPrep 2020. Schrödinger, LLC.
  • Skrzypek, A., Matysiak, J., Karpińska, M., Czarnecka, K., Kręcisz, P., Stary, D., Kukułowicz, J., Paw, B., Bajda, M., Szymański, P., & Niewiadomy, A. (2021). Biological evaluation and molecular docking of novel 1, 3, 4-thiadiazole-resorcinol conjugates as multifunctional cholinesterases inhibitors. Bioorganic Chemistry, 107, 104617. https://doi.org/10.1016/j.bioorg.2020.104617
  • Supuran, C. T., & Clare, B. W. (1999). Carbonic anhydrase inhibitors–Part 57: Quantum chemical QSAR of a group of 1, 3, 4-thiadiazole-and 1, 3, 4-thiadiazoline disulfonamides with carbonic anhydrase inhibitory properties. European Journal of Medicinal Chemistry, 34(1), 41–50. https://doi.org/10.1016/S0223-5234(99)80039-7
  • Supuran, C. T., & Scozzafava, A. (2000a). Carbonic anhydrase inhibitors-Part 94. 1, 3, 4-Thiadiazole-2-sulfonamide derivatives as antitumor agents? European Journal of Medicinal Chemistry, 35(9), 867–874. https://doi.org/10.1016/s0223-5234(00)00169-0
  • Supuran, C. T., & Scozzafava, A. (2000b). Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opinion on Therapeutic Patents, 10(5), 575–600. https://doi.org/10.1517/13543776.10.5.575
  • Taraphder, S., Maupin, C. M., Swanson, J. M., & Voth, G. A. (2016). Coupling protein dynamics with proton transport in human carbonic anhydrase II. The Journal of Physical Chemistry. B, 120(33), 8389–8404. https://doi.org/10.1021/acs.jpcb.6b02166
  • Thiry, A., Supuran, C. T., Masereel, B., & Dogné, J. M. (2008). Recent developments of carbonic anhydrase inhibitors as potential anticancer drugs. Journal of Medicinal Chemistry, 51(11), 3051–3056. https://doi.org/10.1021/jm701526d
  • Turan Yücel, N., Evren, A. E., Kandemir, Ü., & Can, Ö. D. (2022). Antidepressant-like effect of tofisopam in mice: A behavioural, molecular docking and MD simulation study. Journal of Psychopharmacology (Oxford, England), 36(7), 819–835. https://doi.org/10.1177/02698811221095528
  • Türkeş, C., Akocak, S., Işık, M., Lolak, N., Taslimi, P., Durgun, M., Gülçin, İ., Budak, Y., & Beydemir, Ş. (2022). Novel inhibitors with sulfamethazine backbone: Synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. Journal of Biomolecular Structure & Dynamics, 40(19), 8752–8764. https://doi.org/10.1080/07391102.2021.1916599
  • Türkeş, C., Demir, Y., & Beydemir, Ş. Ş (2021). Calcium channel blockers: Molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. Journal of Biomolecular Structure & Dynamics, 39(5), 1672–1680. https://doi.org/10.1080/07391102.2020.1736631
  • Verpoorte, J. A., Mehta, S., & Edsall, J. T. (1967). Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242(18), 4221–4229. https://doi.org/10.1016/S0021-9258(18)95800-X
  • Wu, Z., Shi, J., Chen, J., Hu, D., & Song, B. (2021). Design, synthesis, antibacterial activity, and mechanisms of novel 1, 3, 4-thiadiazole derivatives containing an amide moiety. Journal of Agricultural and Food Chemistry, 69(31), 8660–8670. https://doi.org/10.1021/acs.jafc.1c01626
  • Yang, Y., Hu, X. Q., Li, Q. S., Zhang, X. X., Ruan, B. F., Xu, J., & Liao, C. (2016). Metalloprotein inhibitors for the treatment of human diseases. Current Topics in Medicinal Chemistry, 16(4), 384–396. https://doi.org/10.2174/1568026615666150813145218

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.