80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of β-cycloidal-derived mono-carbonyl curcumin analogs as potential interleukin-6 inhibitor to treat wound healing through QSAR, molecular docking, MD simulation, MM-GBSA calculation

, , ORCID Icon, , , , & show all
Received 20 Dec 2023, Accepted 11 Mar 2024, Published online: 23 Mar 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aggarwal, B. B., & Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology, 41(1), 40–59. https://doi.org/10.1016/j.biocel.2008.06.010
  • Ahamed, F. M., Chinnam, S., Challa, M., Kariyanna, G., Kumer, A., Jadoun, S., Salawi, A., G. Al-Sehemi, A., Chakma, U., Mashud, M. A. A., & Kumari, I. (2024). Molecular dynamics simulation, QSAR, DFT, molecular docking, ADMET, and synthesis of Ethyl 3-((5-Bromopyridin-2-yl) Imino) butanoate analogues as potential inhibitors of SARS-CoV-2. Polycyclic Aromatic Compounds, 44(1), 294–312. https://doi.org/10.1080/10406638.2023.2173618
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6(1), 34984. https://doi.org/10.1038/srep34984
  • Alabdali, A. Y. M., Khalid, R., Kzar, M., Ezzat, M. O., Huei, G. M., Hsia, T. W., Mogana, R., Rahman, H., Razik, B. M. A., Issac, P. K., Chinnappan, S., & Khalivulla, S. I. (2022). Design, synthesis, in silico and antibacterial evaluation of curcumin derivatives loaded nanofiber as potential wound healing agents. Journal of King Saud University - Science, 34(7), 102205. https://doi.org/10.1016/j.jksus.2022.102205
  • Aldossari, R. M., Ali, A., Rashid, S., Rehman, M. U., Ahmad, S. B., & Malla, B. A. (2023). Insights on in-silico approaches for identifying potential bioactive inhibitors for TNF-α and IL-6 proteins associated with rheumatoid arthritis. Arabian Journal of Chemistry, 16(11), 105200. https://doi.org/10.1016/j.arabjc.2023.105200
  • Alghamdi, S. S., Alshafi, R. A., Huwaizi, S., Suliman, R. S., Mohammed, A. E., Alehaideb, Z. I., Alturki, A. Y., Alghashem, S. A., & Rahman, I. (2023). Exploring in vitro and in silico biological activities of Calligonum Comosum and Rumex Vesicarius: Implications on anticancer and antibacterial therapeutics. Saudi Pharmaceutical Journal: SPJ: The Official Publication of the Saudi Pharmaceutical Society, 31(11), 101794. https://doi.org/10.1016/j.jsps.2023.101794
  • Al-Warhi, T., Zahran, E. M., Selim, S., Al-Sanea, M. M., Ghoneim, M. M., Maher, S. A., Mostafa, Y. A., Alsenani, F., Elrehany, M. A., Almuhayawi, M. S., Al Jaouni, S. K., Abdelmohsen, U. R., & Elmaidomy, A. H. (2022). Antioxidant and wound healing potential of Vitis vinifera seeds supported by phytochemical characterization and docking studies. Antioxidants (Basel, Switzerland), 11(5), 881. https://doi.org/10.3390/antiox11050881
  • Aqel, S. I., Kraus, E. E., Jena, N., Kumari, V., Granitto, M. C., Mao, L., Farinas, M. F., Zhao, E. Y., Perottino, G., Pei, W., Lovett-Racke, A. E., Racke, M. K., Fuchs, J. R., Li, C., & Yang, Y. (2019). Novel small molecule IL-6 inhibitor suppresses autoreactive Th17 development and promotes Treg development. Clinical and Experimental Immunology, 196(2), 215–225. https://doi.org/10.1111/cei.13258
  • Bairwa, K., Grover, J., Kania, M., & Jachak, S. M. (2014). Recent developments in chemistry and biology of curcumin analogues. RSC Advances, 4(27), 13946–13978. https://doi.org/10.1039/c4ra00227j
  • Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E., Mittal, J., Feig, M., & MacKerell, A. D. Jr. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Bjarnsholt, T., Cooper, R., Wolcott, R. D., Fletcher, J., Fromantin, I., Kirketerp-Mølle, K., Malone, M., & Shultz, G. (2016). Position document: Management of biofilm (pp. 1–25). World Union of Wound Healing Societies.
  • Bodas, K., & Shinde, V. (2021). Healing of wounds: A detailed review on models, biomarkers, biochemical and other wound assessment parameters. Inflammation, 9(3), 2069–2085.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cullen, B., Watt, P. W., Lundqvist, C., Silcock, D., Schmidt, R. J., Bogan, D., & Light, N. D. (2002). The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. The International Journal of Biochemistry & Cell Biology, 34(12), 1544–1556. https://doi.org/10.1016/S1357-2725(02)00054-7
  • Das, D., Nanda, M., Banjare, P., & Lanjhiyana, S. (2023). Exploration of multitargeted antialzheimer’s activity of safflower leaves phytoconstituents: In silico molecular docking approach. European Journal of Medicinal Chemistry Reports, 10, 100119. https://doi.org/10.1016/j.ejmcr.2023.100119
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40(1), 82–92.
  • Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R., & Meiler, J. (2009). Solvent accessible surface area approximations for rapid and accurate protein structure prediction. Journal of Molecular Modeling, 15(9), 1093–1108. https://doi.org/10.1007/s00894-009-0454-9
  • Ferrari, E., Pignedoli, F., Imbriano, C., Marverti, G., Basile, V., Venturi, E., & Saladini, M. (2011). Newly synthesized curcumin derivatives: Crosstalk between chemico-physical properties and biological activity. Journal of Medicinal Chemistry, 54(23), 8066–8077. https://doi.org/10.1021/jm200872q
  • Gallucci, R. M., Simeonova, P. P., Matheson, J. M., Kommineni, C., Guriel, J. L., Sugawara, T., & Luster, M. I. (2000). Impaired cutaneous wound healing in interleukin‐6‐deficient and immunosuppressed mice. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 14(15), 2525–2531. https://doi.org/10.1096/fj.00-0073com
  • Gohlke, H., & Klebe, G. (2002). Approaches to the description and prediction of the binding affinity of small‐molecule ligands to macromolecular receptors. Angewandte Chemie International Edition, 41(15), 2644–2676. https://doi.org/10.1002/1521-3773(20020802)41:15%3C2644::AID-ANIE2644%3E3.0.CO;2-O
  • Han, H., Alsayed, A. M. M., Wang, Y., Yan, Q., Shen, A., Zhang, J., Ye, Y., Liu, Z., Wang, K., & Zheng, X. (2023). Discovery of β-cyclocitral-derived mono-carbonyl curcumin analogs as anti-hepatocellular carcinoma agents via suppression of MAPK signaling pathway. Bioorganic Chemistry, 132, 106358. https://doi.org/10.1016/j.bioorg.2023.106358
  • Hassan, N. H., El-Hawary, S. S., Emam, M., Rabeh, M. A., Tantawy, M. A., Seif, M., Abd-Elal, R. M., Bringmann, G., Abdelmohsen, U. R., & Selim, N. M. (2023). Pectin nanoparticle-loaded soft coral Nephthea sp. extract as in situ gel enhances chronic wound healing: In vitro, in vivo, and in silico studies. Pharmaceuticals (Basel, Switzerland), 16(7), 957. https://doi.org/10.3390/ph16070957
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. 10.1109/MCSE.2007.55
  • Hussen, N. H., Hasan, A. H., Jamalis, J., Shakya, S., Chander, S., Kharkwal, H., Murugesan, S., Bastikar, V. A., & Gupta, P. P. (2022). Potential inhibitory activity of phytoconstituents against black fungus: In silico ADMET, molecular docking and MD simulation studies. Computational Toxicology (Amsterdam, Netherlands), 24, 100247. https://doi.org/10.1016/j.comtox.2022.100247
  • Johnson, B. Z., Stevenson, A. W., Prêle, C. M., Fear, M. W., & Wood, F. M. (2020). The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines, 8(5), 101. https://doi.org/10.3390/biomedicines8050101
  • Jorgensen, W. L., & Madura, J. D. (1983). Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water. Journal of the American Chemical Society, 105(6), 1407–1413. https://doi.org/10.1021/ja00344a001
  • Kandhare, A. D., Alam, J., Patil, M. V., Sinha, A., & Bodhankar, S. L. (2016). Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharmaceutical Biology, 54(3), 419–432. https://doi.org/10.3109/13880209.2015.1038755
  • Kunnumakkara, A. B., Hegde, M., Parama, D., Girisa, S., Kumar, A., Daimary, U. D., Garodia, P., Yenisetti, S. C., Oommen, O. V., & Aggarwal, B. B. (2023). Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials. ACS Pharmacology & Translational Science, 6(4), 447–518. https://doi.org/10.1021/acsptsci.2c00012
  • Legiawati, L., Fadilah, F., Bramono, K., & Indriatmi, W. (2018). In silico study of Centella asiatica active compounds as anti-inflammatory agent by decreasing Il-1 and Il-6 activity, promoting Il-4 activity. Journal of Pharmaceutical Sciences and Research, 10(9), 2142–2147.
  • Li, J., Chen, J., & Kirsner, R. (2007). Pathophysiology of acute wound healing. Clinics in Dermatology, 25(1), 9–18. https://doi.org/10.1016/j.clindermatol.2006.09.007
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2010). Relation between free energy landscapes of proteins and dynamics. Journal of Chemical Theory and Computation, 6(2), 583–595. https://doi.org/10.1021/ct9005745
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Mikitsh, J. L., & Chacko, A. M. (2014). Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspectives in Medicinal Chemistry, 6, 11–24. https://doi.org/10.4137/PMC.S13384
  • Nada, H., Sivaraman, A., Lu, Q., Min, K., Kim, S., Goo, J. I., Choi, Y., & Lee, K. (2023). Perspective for discovery of small molecule IL-6 inhibitors through study of structure–activity relationships and molecular docking. Journal of Medicinal Chemistry, 66(7), 4417–4433. https://doi.org/10.1021/acs.jmedchem.2c01957
  • Nguyen, H. D., & Kim, M. S. (2023). Identification of promising inhibitory heterocyclic compounds against acetylcholinesterase using QSAR, ADMET, biological activity, and molecular docking. Computational Biology and Chemistry, 104, 107872. https://doi.org/10.1016/j.compbiolchem.2023.107872
  • Nurfina, A. N., Reksohadiprodjo, M. S., Timmerman, H., Jenie, U. A., Sugiyanto, D., & Van der Goot, H. (1997). Synthesis of some symmetrical curcumin derivatives and their antiinflammatory activity. European Journal of Medicinal Chemistry, 32(4), 321–328. https://doi.org/10.1016/S0223-5234(97)89084-8
  • Pace, C. N., Fu, H., Lee Fryar, K., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science: A Publication of the Protein Society, 23(5), 652–661. https://doi.org/10.1002/pro.2449
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Patel, H. M., Noolvi, M. N., Sharma, P., Jaiswal, V., Bansal, S., Lohan, S., Kumar, S. S., Abbot, V., Dhiman, S., & Bhardwaj, V. (2014). Quantitative structure–activity relationship (QSAR) studies as strategic approach in drug discovery. Medicinal Chemistry Research, 23(12), 4991–5007. https://doi.org/10.1007/s00044-014-1072-3
  • Petersen, H. G. (1995). Accuracy and efficiency of the particle mesh Ewald method. The Journal of Chemical Physics, 103(9), 3668–3679. https://doi.org/10.1063/1.470043
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science: A Publication of the Protein Society, 30(1), 70–82. https://doi.org/10.1002/pro.3943
  • Pitera, J. W. (2014). Expected distributions of root-mean-square positional deviations in proteins. The Journal of Physical Chemistry. B, 118(24), 6526–6530. https://doi.org/10.1021/jp412776d
  • Rahman, M. M., Biswas, S., Islam, K. J., Paul, A. S., Mahato, S. K., Ali, M. A., & Halim, M. A. (2021). Antiviral phytochemicals as potent inhibitors against NS3 protease of dengue virus. Computers in Biology and Medicine, 134, 104492. https://doi.org/10.1016/j.compbiomed.2021.104492
  • Rathnayake, S., Madushanka, A., Wijegunawardana, N. A. D., Mylvaganam, H., Rathnayake, A., Perera, E. G., Jayamanna, I., Chandrasena, P., Ranaweera, A., Jayasooriya, P., & Bamunuarachchige, C. (2020). In silico study of 5, 7-dimethoxycoumarin and p-coumaric acid in Carica papaya leaves as dengue virus type 2 protease inhibitors. Proceedings, 79(1), 11. https://doi.org/10.3390/IECBM2020-08820
  • Roney, M., Huq, A. M., Rullah, K., Hamid, H. A., Imran, S., Islam, M. A., & Mohd Aluwi, M. F. F. (2021). Virtual screening-based identification of potent DENV-3 RdRp protease inhibitors via in-house usnic acid derivative database. Journal of Computational Biophysics and Chemistry, 20(08), 797–814. https://doi.org/10.1142/S2737416521500496
  • Rostami, M., Kolahi Azar, H., Salehi, M., Abedin Dargoush, S., Rostamani, H., Jahed-Khaniki, G., Alikord, M., Aghabeigi, R., Ahmadi, A., Beheshtizadeh, N., Webster, T. J., & Rezaei, N. (2023). The food and biomedical applications of curcumin-loaded electrospun nanofibers: A comprehensive review. Critical Reviews in Food Science and Nutrition, 1–28. https://doi.org/10.1080/10408398.2023.2251584
  • Saha, S., Naik, J., Amaresan, N., & Pithawala, M. (2022). In silico analysis of Typha domingensis Pers. phytocompounds against wound healing biomarkers and ascertaining through in vitro cell migration assay. 3 Biotech, 12(8), 166. https://doi.org/10.1007/s13205-022-03229-9
  • Shi, W., Dolai, S., Rizk, S., Hussain, A., Tariq, H., Averick, S., L'Amoreaux, W., El Ldrissi, A., Banerjee, P., & Raja, K. (2007). Synthesis of monofunctional curcumin derivatives, clicked curcumin dimer, and a PAMAM dendrimer curcumin conjugate for therapeutic applications. Organic Letters, 9(26), 5461–5464. https://doi.org/10.1021/ol702370m
  • Siddikey, F., Roni, M., Kumer, A., Chakma, U., & Matin, M. (2022). Computational investigation of Betalain derivatives as natural inhibitor against food borne bacteria. Current Chemistry Letters, 11(3), 309–320. https://doi.org/10.5267/j.ccl.2022.3.003
  • Sittel, F., Jain, A., & Stock, G. (2014). Principal component analysis of molecular dynamics: On the use of Cartesian vs. internal coordinates. The Journal of Chemical Physics, 141(1), 014111. https://doi.org/10.1063/1.4885338
  • Strodtbeck, F. (2001). Physiology of wound healing. Newborn and Infant Nursing Reviews, 1(1), 43–52. https://doi.org/10.1053/nbin.2001.23176
  • Swaroop, A. K., Namboori, P. K., Esakkimuthukumar, M., Praveen, T. K., Nagarjuna, P., Patnaik, S. K., & Selvaraj, J. (2023). Leveraging decagonal in-silico strategies for uncovering IL-6 inhibitors with precision. Computers in Biology and Medicine, 163, 107231. https://doi.org/10.1016/j.compbiomed.2023.107231
  • Torbat, N. A., Akbarzadeh, I., Rezaei, N., Moghaddam, Z. S., Bazzazan, S., & Mostafavi, E. (2023). Curcumin-Incorporated Biomaterials: In silico and in vitro evaluation of biological potentials. Coordination Chemistry Reviews, 492, 215233. https://doi.org/10.1016/j.ccr.2023.215233
  • Turner, P. (2005). XMGRACE, Version 5.1.19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. Jr, (2010). CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Wang, T., Wu, M. B., Lin, J. P., & Yang, L. R. (2015). Quantitative structure–activity relationship: Promising advances in drug discovery platforms. Expert Opinion on Drug Discovery, 10(12), 1283–1300. https://doi.org/10.1517/17460441.2015.1083006
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.