121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the impact of two C5 genetic variants on C5-eculizumab complex stability at the molecular level

, , &
Received 29 Nov 2023, Accepted 11 Mar 2024, Published online: 26 Mar 2024

References

  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bektas, M., Copley-Merriman, C., Khan, S., Sarda, S. P., & Shammo, J. M. (2020). Paroxysmal nocturnal hemoglobinuria: Role of the complement system, pathogenesis, and pathophysiology. Journal of Managed Care & Specialty Pharmacy, 26(12-b Suppl), S3–S8. https://doi.org/10.18553/jmcp.2020.26.12-b.s3
  • Bessler, M., Mason, P. J., Hillmen, P., Miyata, T., Yamada, N., Takeda, J., Luzzatto, L., & Kinoshita, T. (1994). Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. The EMBO Journal, 13(1), 110–117. https://doi.org/10.1002/j.1460-2075.1994.tb06240.x
  • Brachet, G., Bourquard, T., Gallay, N., Reiter, E., Gouilleux-Gruart, V., Poupon, A., & Watier, H. (2016). Eculizumab epitope on complement C5: Progress towards a better understanding of the mechanism of action. Molecular Immunology, 77, 126–131. https://doi.org/10.1016/j.molimm.2016.07.016
  • Brodsky, R. A. (2009). How do PIG-A mutant paroxysmal nocturnal hemoglobinuria stem cells achieve clonal dominance? Expert Review of Hematology, 2(4), 353–356. https://doi.org/10.1586/ehm.09.35
  • Brodsky, R. A. (2014). Paroxysmal nocturnal hemoglobinuria. Blood, 124(18), 2804–2811. https://doi.org/10.1182/blood-2014-02-522128
  • Brodsky, R. A., Young, N. S., Antonioli, E., Risitano, A. M., Schrezenmeier, H., Schubert, J., Gaya, A., Coyle, L., de Castro, C., Fu, C.-L., Maciejewski, J. P., Bessler, M., Kroon, H.-A., Rother, R. P., & Hillmen, P. (2008). Multicenter phase 3 study of the complement inhibitor eculizumab for the treatment of patients with paroxysmal nocturnal hemoglobinuria. Blood, 111(4), 1840–1847. https://doi.org/10.1182/blood-2007-06-094136
  • Elzaiat, M., Flatters, D., Sierra-Díaz, D. C., Legois, B., Laissue, P., & Veitia, R. A. (2020). DHH pathogenic variants involved in 46,XY disorders of sex development differentially impact protein self-cleavage and structural conformation. Human Genetics, 139(11), 1455–1470. https://doi.org/10.1007/s00439-020-02189-5
  • Ferreira, P., Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2017). Improving the catalytic power of the DszD enzyme for the biodesulfurization of crude oil and derivatives. Chemistry (Weinheim an der Bergstrasse, Germany), 23(68), 17231–17241. https://doi.org/10.1002/chem.201704057
  • Fu, R., Li, L., Li, L., Liu, H., Zhang, T., Ding, S., Wang, G., Song, J., Wang, H., Xing, L., Guan, J., & Shao, Z. (2020). Analysis of clinical characteristics of 92 patients with paroxysmal nocturnal hemoglobinuria: A single institution experience in China. Journal of Clinical Laboratory Analysis, 34(1), e23008. https://doi.org/10.1002/jcla.23008
  • Harder, M. J., Höchsmann, B., Dopler, A., Anliker, M., Weinstock, C., Skerra, A., Simmet, T., Schrezenmeier, H., & Schmidt, C. Q. (2019). Different levels of incomplete terminal pathway inhibition by eculizumab and the clinical response of PNH patients. Frontiers in Immunology, 10, 1639. https://doi.org/10.3389/fimmu.2019.01639
  • Heeney, M. M., Ormsbee, S. M., Anthony Moody, M., Howard, T. A., DeCastro, C. M., & Ware, R. E. (2003). Increased expression of anti-apoptosis genes in peripheral blood cells from patients with paroxysmal nocturnal hemoglobinuria. Molecular Genetics and Metabolism, 78(4), 291–294. https://doi.org/10.1016/S1096-7192(03)00047-7
  • Hillmen, P., Muus, P., Röth, A., Elebute, M. O., Risitano, A. M., Schrezenmeier, H., Szer, J., Browne, P., Maciejewski, J. P., Schubert, J., Urbano‐Ispizua, A., Castro, C., Socié, G., & Brodsky, R. A. (2013). Long‐term safety and efficacy of sustained eculizumab treatment in patients with paroxysmal nocturnal haemoglobinuria. British Journal of Haematology, 162(1), 62–73. https://doi.org/10.1111/bjh.12347
  • Hillmen, P., Young, N. S., Schubert, J., Brodsky, R. A., Socié, G., Muus, P., Röth, A., Szer, J., Elebute, M. O., Nakamura, R., Browne, P., Risitano, A. M., Hill, A., Schrezenmeier, H., Fu, C.-L., Maciejewski, J., Rollins, S. A., Mojcik, C. F., Rother, R. P., & Luzzatto, L. (2006). The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. The New England Journal of Medicine, 355(12), 1233–1243. https://doi.org/10.1056/NEJMoa061648
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jore, M. M., Johnson, S., Sheppard, D., Barber, N. M., Li, Y. I., Nunn, M. A., Elmlund, H., & Lea, S. M. (2016). Structural basis for therapeutic inhibition of complement C5. Nature Structural & Molecular Biology, 23(5), 378–386. https://doi.org/10.1038/nsmb.3196
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Katsonis, P., Koire, A., Wilson, S. J., Hsu, T.-K., Lua, R. C., Wilkins, A. D., & Lichtarge, O. (2014). Single nucleotide variations: Biological impact and theoretical interpretation. Protein Science: A Publication of the Protein Society, 23(12), 1650–1666. https://doi.org/10.1002/pro.2552
  • Lapaillerie, D., Charlier, C., Guyonnet-Dupérat, V., Murigneux, E., Fernandes, H. S., Martins, F. G., Magalhães, R. P., Vieira, T. F., Richetta, C., Subra, F., Lebourgeois, S., Charpentier, C., Descamps, D., Visseaux, B., Weigel, P., Favereaux, A., Beauvineau, C., Buron, F., Teulade-Fichou, M.-P., … Parissi, V. (2022). Selection of bis-indolyl pyridines and triphenylamines as new inhibitors of SARS-CoV-2 cellular entry by modulating the spike protein/ACE2 interfaces. Antimicrobial Agents and Chemotherapy, 66(8), e00083-22. https://doi.org/10.1128/aac.00083-22
  • Magalhães, R. P., Fernandes, H. S., & Sousa, S. F. (2022). The critical role of Asp206 stabilizing residues on the catalytic mechanism of the Ideonella sakaiensis PETase. Catalysis Science & Technology, 12(11), 3474–3483. https://doi.org/10.1039/D1CY02271G
  • Mahtarin, R., Islam, S., Islam, M. J., Ullah, M. O., Ali, M. A., & Halim, M. A. (2022). Structure and dynamics of membrane protein in SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 40(10), 4725–4738. https://doi.org/10.1080/07391102.2020.1861983
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Martínez-Rosell, G., Giorgino, T., & De Fabritiis, G. (2017). PlayMolecule ProteinPrepare: A web application for protein preparation for molecular dynamics simulations. Journal of Chemical Information and Modeling, 57(7), 1511–1516. https://doi.org/10.1021/acs.jcim.7b00190
  • Martins, F. G., Melo, A., & Sousa, S. F. (2021). Identification of new potential inhibitors of quorum sensing through a specialized multi-level computational approach. Molecules (Basel, Switzerland), 26(9), 2600. https://doi.org/10.3390/molecules26092600
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py : An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mohamed, F. E., Al Sorkhy, M., Ghattas, M. A., Al-Gazali, L., Al-Dirbashi, O., Al-Jasmi, F., & Ali, B. R. (2020). The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis. Human Genetics, 139(5), 657–673. https://doi.org/10.1007/s00439-020-02153-3
  • Muthukumar, V. C. (2023). Escherichia coli FtsZ molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 42(5), 2653–2666. https://doi.org/10.1080/07391102.2023.2206917
  • Nishimura, J-I., Yamamoto, M., Hayashi, S., Ohyashiki, K., Ando, K., Brodsky, A. L., Noji, H., Kitamura, K., Eto, T., Takahashi, T., Masuko, M., Matsumoto, T., Wano, Y., Shichishima, T., Shibayama, H., Hase, M., Li, L., Johnson, K., Lazarowski, A., … Kanakura, Y. (2014). Genetic variants in C5 and poor response to eculizumab. The New England Journal of Medicine, 370(7), 632–639. https://doi.org/10.1056/NEJMoa1311084
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 55(2), 383–394. https://doi.org/10.1002/prot.20033
  • Pereira, A. C., Pina, A. F., Sousa, D., Ferreira, D., Santos-Pereira, C., Rodrigues, J. L., Melo, L. D. R., Sales, G., Sousa, S. F., & Rodrigues, L. R. (2022). Identification of novel aptamers targeting cathepsin B-overexpressing prostate cancer cells. Molecular Systems Design & Engineering, 7(6), 637–650. https://doi.org/10.1039/D2ME00022A
  • Pina, A. F., Sousa, S. F., Azevedo, L., & Carneiro, J. (2022). Non-B DNA conformations analysis through molecular dynamics simulations. Biochimica Et Biophysica Acta. General Subjects, 1866(12), 130252. https://doi.org/10.1016/j.bbagen.2022.130252
  • Quelhas, D., Carneiro, J., Lopes-Marques, M., Jaeken, J., Martins, E., Rocha, J. F., Teixeira Carla, S. S., Ferreira, C. R., Sousa, S. F., & Azevedo, L. (2021). Assessing the effects of PMM2 variants on protein stability. Molecular Genetics and Metabolism, 134(4), 344–352. https://doi.org/10.1016/j.ymgme.2021.11.002
  • Risitano, A. M., Marotta, S., Ricci, P., Marano, L., Frieri, C., Cacace, F., Sica, M., Kulasekararaj, A., Calado, R. T., Scheinberg, P., Notaro, R., & Peffault de Latour, R. (2019). Anti-complement treatment for paroxysmal nocturnal hemoglobinuria: Time for proximal complement inhibition? A position paper from the SAAWP of the EBMT. Frontiers in Immunology, 10, 1157. https://doi.org/10.3389/fimmu.2019.01157
  • Risitano, A. M., Notaro, R., Marando, L., Serio, B., Ranaldi, D., Seneca, E., Ricci, P., Alfinito, F., Camera, A., Gianfaldoni, G., Amendola, A., Boschetti, C., Di Bona, E., Fratellanza, G., Barbano, F., Rodeghiero, F., Zanella, A., Iori, A. P., Selleri, C., Luzzatto, L., & Rotoli, B. (2009). Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood, 113(17), 4094–4100. https://doi.org/10.1182/blood-2008-11-189944
  • Schatz-Jakobsen, J. A., Zhang, Y., Johnson, K., Neill, A., Sheridan, D., & Andersen, G. R. (2016). Structural basis for eculizumab-mediated inhibition of the complement terminal pathway. Journal of Immunology (Baltimore, Md.: 1950), 197(1), 337–344. https://doi.org/10.4049/jimmunol.1600280
  • Schmidt, C. Q., Schrezenmeier, H., & Kavanagh, D. (2022). Complement and the prothrombotic state. Blood, 139(13), 1954–1972. https://doi.org/10.1182/blood.2020007206
  • Schrezenmeier, H., & Höchsmann, B. (2009). Eculizumab opens a new era of treatment for paroxysmal nocturnal hemoglobinuria. Expert Review of Hematology, 2(1), 7–16. https://doi.org/10.1586/17474086.2.1.7
  • Serrano, C., Teixeira, C. S. S., Cooper, D. N., Carneiro, J., Lopes-Marques, M., Stenson, P. D., Amorim, A., Prata, M. J., Sousa, S. F., & Azevedo, L. (2021). Compensatory epistasis explored by molecular dynamics simulations. Human Genetics, 140(9), 1329–1342. https://doi.org/10.1007/s00439-021-02307-x
  • Shapovalov, M. V., & Dunbrack, R. L. (2011). A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure (London, England: 1993), 19(6), 844–858. https://doi.org/10.1016/j.str.2011.03.019
  • Takeda, J., Miyata, T., Kawagoe, K., Iida, Y., Endo, Y., Fujita, T., Takahashi, M., Kitani, T., & Kinoshita, T. (1993). Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell, 73(4), 703–711. https://doi.org/10.1016/0092-8674(93)90250-t
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20(2), 217–230. https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.