46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the Antarctic aminopeptidase P from Pseudomonas sp. strain AMS3 through structural analysis and molecular dynamics simulation

, , , , ORCID Icon &
Received 30 Nov 2023, Accepted 11 Mar 2024, Published online: 31 Mar 2024

References

  • Abedi Karjiban, R., Abdul Rahman, M. B., Basri, M., Salleh, A. B., Jacobs, D., & Abdul Wahab, H. (2009). Molecular dynamics study of the structure, flexibility and dynamics of thermostable L1 lipase at high temperatures. The Protein Journal, 28(1), 14–23. https://doi.org/10.1007/s10930-008-9159-7
  • Ali, M. S. M., Mohd Fuzi, S. F., Ganasen, M., Abdul Rahman, R. N. Z. R., Basri, M., & Salleh, A. B. (2013). Structural adaptation of cold-active RTX lipase from Pseudomonas sp. Strain AMS8 revealed via homology and molecular dynamics simulation approaches. BioMed Research International, 2013, 925373–925379. https://doi.org/10.1155/2013/925373
  • Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L., & Thornton, J. M. (2008). Metal ions in biological catalysis: From enzyme databases to general principles. Journal of Biological Inorganic Chemistry: JBIC, 13(8), 1205–1218. https://doi.org/10.1007/s00775-008-0404-5
  • Are, V. N., Kumar, A., Goyal, V. D., Gotad, S. S., Ghosh, B., Gadre, R., Jamdar, S. N., & Makde, R. D. (2019). Structures and activities of widely conserved small prokaryotic aminopeptidases-P clarify classification of M24B peptidases. Proteins, 87(3), 212–225. https://doi.org/10.1002/prot.25641
  • Baik, A. S., Mironov, K. S., Arkhipov, D. V., Piotrovskii, M. S., & Pojidaeva, E. S. (2018). Characterization of Aminopeptidase P from the Unicellular Cyanobacterium Synechocystis sp. PCC6803. Doklady, Biochemistry and Biophysics, 481(1), 190–194. https://doi.org/10.1134/S1607672918040038
  • Benkovic, S. J., & Hammes-Schiffer, S. (2003). A perspective on enzyme catalysis. Science (New York, N.Y.), 301(5637), 1196–1202. https://doi.org/10.1126/science.1085515
  • Besio, R., Alleva, S., Forlino, A., Lupi, A., Meneghini, C., Minicozzi, V., Profumo, A., Stellato, F., Tenni, R., & Morante, S. (2010). Identifying the structure of the active sites of human recombinant prolidase. European Biophysics Journal: EBJ, 39(6), 935–945. https://doi.org/10.1007/s00249-009-0459-4
  • Brodmerkel, M. N., De Santis, E., Uetrecht, C., Caleman, C., & Marklund, E. G. (2022). Stability and conformational memory of electrosprayed and rehydrated bacteriophage MS2 virus coat proteins. Current Research in Structural Biology, 4, 338–348. https://doi.org/10.1016/j.crstbi.2022.10.001
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Cunningham, F., & Deber, C. M. (2007). Optimizing synthesis and expression of transmembrane peptides and proteins. Methods (San Diego, Calif.), 41(4), 370–380. https://doi.org/10.1016/j.ymeth.2006.07.003
  • Day, R., Bennion, B. J., Ham, S., & Daggett, V. (2002). Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. Journal of Molecular Biology, 322(1), 189–203. https://doi.org/10.1016/S0022-2836(02)00672-1
  • Dey, D., Biswas, P., Paul, P., Mahmud, S., Ema, T. I., Khan, A. A., Ahmed, S. Z., Hasan, M. M., Saikat, A. S. M., Fatema, B., Bibi, S., Rahman, M. A., & Kim, B. (2023). Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: A computational drug development approach. Molecular Diversity, 27(3), 1309–1322. https://doi.org/10.1007/s11030-022-10491-9
  • Driessen, A. J. M., & Nouwen, N. (2008). Protein translocation across the bacterial cytoplasmic membrane. Annual Review of Biochemistry, 77(1), 643–667. https://doi.org/10.1146/annurev.biochem.77.061606.160747
  • Dubey, K. D., Wang, B., Si, Y., & Tarique Moin, S. (2021). Editorial: Molecular dynamics simulations of metalloproteins and metalloenzymes. Frontiers in Chemistry, 9, 789299. https://doi.org/10.3389/fchem.2021.789299
  • Dutta, M., Tareq, A. M., Rakib, A., Mahmud, S., Sami, S. A., Mallick, J., Islam, M. N., Majumder, M., Uddin, M. Z., Alsubaie, A., Almalki, A. S. A., Khandaker, M. U., Bradley, D. A., Rana, M. S., & Emran, T. B. (2021). Phytochemicals from leucas zeylanica targeting main protease of sars-cov-2: Chemical profiles, molecular docking, and molecular dynamics simulations. Biology, 10(8), 789. https://doi.org/10.3390/biology10080789
  • Feinbaum, R. L., Urbach, J. M., Liberati, N. T., Djonovic, S., Adonizio, A., Carvunis, A. R., & Ausubel, F. M. (2012). Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS Pathogens, 8(7), e1002813. https://doi.org/10.1371/journal.ppat.1002813
  • Furhan, J. (2020). Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs: Recent overview. Journal of Genetic Engineering and Biotechnology, 18(1), 36. https://doi.org/10.1186/s43141-020-00053-7
  • Gill, S. C., & Von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry, 182, 319–326.
  • Giovanola, M., D'Antoni, F., Santacroce, M., Mari, S. A., Cherubino, F., Bossi, E., Sacchi, V. F., & Castagna, M. (2012). Role of a conserved glycine triplet in the NSS amino acid transporter KAAT1. Biochimica et Biophysica Acta, 1818(7), 1737–1744. https://doi.org/10.1016/j.bbamem.2012.02.023
  • Graham, S. C., Lee, M., Freeman, H. C., & Guss, J. M. (2003). An orthorhombic form of Escherichia coli aminopeptidase P at 2.4 Å resolution. Acta Crystallographica. Section D, Biological Crystallography, 59(Pt 5), 897–902. https://doi.org/10.1107/S0907444903005870
  • Graham, S. C., Lilley, P. E., Lee, M., Schaeffer, P. M., Kralicek, A. V., Dixon, N. E., & Guss, J. M. (2006). Kinetic and crystallographic analysis of mutant Escherichia coli aminopeptidase P: Insights into substrate recognition and the mechanism of catalysis. Biochemistry, 45(3), 964–975. https://doi.org/10.1021/bi0518904
  • Henderson, J. A., Liu, R., Harris, J. A., Huang, Y., de Oliveira, V. M., & Shen, J. (2022). A guide to the continuous constant pH molecular dynamics methods in Amber and CHARMM [Article v1.0]. Living Journal of Computational Molecular Science, 4(1), 1–43. https://doi.org/10.33011/livecoms.4.1.1563
  • Hou, Y., Qiao, C., Wang, Y., Wang, Y., Ren, X., Wei, Q., & Wang, Q. (2019). Cold-adapted glutathione S-transferases from Antarctic psychrophilic bacterium Halomonas sp. ANT108: Heterologous expression, characterization, and oxidative resistance. Marine Drugs, 17(3), 147. https://doi.org/10.3390/md17030147
  • Jalil, F. N. F. A. A., Rahman, R. N. Z. R. A., Salleh, A. B., & Ali, M. S. M. (2018). Optimization and in silico analysis of a cold-adapted lipase from an Antarctic Pseudomonas sp. Strain ams8 reaction in triton x-100 reverse micelles. Catalysts, 8(7), 289. https://doi.org/10.3390/catal8070289
  • Jao, S. C., Huang, L. F., Tao, Y. S., & Li, W. S. (2004). Hydrolysis of organophosphate triesters by Escherichia coli aminopeptidase P. Journal of Molecular Catalysis B: Enzymatic, 27(1), 7–12. https://doi.org/10.1016/j.molcatb.2003.09.002
  • Kalia, M., Miotto, M., Ness, D., Opie-Martin, S., Spargo, T. P., Di Rienzo, L., Biagini, T., Petrizzelli, F., Al Khleifat, A., Kabiljo, R., Mazza, T., Ruocco, G., Milanetti, E., Dobson, R. J., Al-Chalabi, A., & Iacoangeli, A. (2023). Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Computational and Structural Biotechnology Journal, 21, 5296–5308. https://doi.org/10.1016/j.csbj.2023.09.016
  • Kamarudin, N. H. A., Rahman, R. N. Z. R. A., Ali, M. S. M., Leow, T. C., Basri, M., & Salleh, A. B. (2014). Unscrambling the effect of C-terminal tail deletion on the stability of a cold-adapted, organic solvent stable lipase from Staphylococcus epidermidis AT2. Molecular Biotechnology, 56(8), 747–757. https://doi.org/10.1007/s12033-014-9753-1
  • Karshikoff, A., Nilsson, L., & Ladenstein, R. (2015). Rigidity versus flexibility: The dilemma of understanding protein thermal stability. The FEBS Journal, 282(20), 3899–3917. https://doi.org/10.1111/febs.13343
  • Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007. https://doi.org/10.1002/jcc.23899
  • Lindman, S., Xue, W. F., Szczepankiewicz, O., Bauer, M. C., Nilsson, H., & Linse, S. (2006). Salting the charged surface: pH and salt dependence of protein G B1 stability. Biophysical Journal, 90(8), 2911–2921. https://doi.org/10.1529/biophysj.105.071050
  • Liu, Y., Zhang, N., Ma, J., Zhou, Y., Wei, Q., Tian, C., Fang, Y., Zhong, R., Chen, G., & Zhang, S. (2023). Advances in cold-adapted enzymes derived from microorganisms. Frontiers in Microbiology, 14, 1152847. https://doi.org/10.3389/fmicb.2023.1152847
  • Lowther, W. T., & Matthews, B. W. (2002). Metalloaminopeptidases: Common functional themes in disparate structural surroundings. Chemical Reviews, 102(12), 4581–4608. https://doi.org/10.1021/cr0101757
  • Luthy, R., Bowei, J., & Einsenberg, D. (1997). Verify3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.
  • Mahmud, S., Biswas, S., Kumar Paul, G., Mita, M. A., Afrose, S., Robiul Hasan, M., Sharmin Sultana Shimu, M., Uddin, M. A. R., Salah Uddin, M., Zaman, S., Kaderi Kibria, K. M., Arif Khan, M., Bin Emran, T., & Abu Saleh, M. (2021). Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. Arabian Journal of Chemistry, 14(9), 103315. https://doi.org/10.1016/j.arabjc.2021.103315
  • Mahmud, S., Mita, M. A., Biswas, S., Paul, G. K., Promi, M. M., Afrose, S., Hasan, R., Shimu, S. S., Zaman, S., Uddin, S., Tallei, T. E., Emran, T. B., & Saleh, A. (2021). Molecular docking and dynamics study to explore phytochemical ligand molecules against the main protease of SARS-CoV-2 from extensive phytochemical datasets. Expert Review of Clinical Pharmacology, 14(10), 1305–1315. https://doi.org/10.1080/17512433.2021.1959318
  • Martins, J. M., Galinari, É., Pimentel-Filho, N. J., Ribeiro, J. I., Furtado, M. M., & Ferreira, C. L. L. F. (2015). Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 46(1), 219–230. https://doi.org/10.1590/S1517-838246120131003
  • Mc Donnell, M., Fitzgerald, R., Fhaoláin, I. N., Jennings, P. V., & O'Cuinn, G. (1997). Purification and characterization of aminopeptidase P from Lactococcus lactis subsp. cremoris. The Journal of Dairy Research, 64(3), 399–407. https://doi.org/10.1017/S0022029997002318
  • McBroom, A. J., Johnson, A. P., Vemulapalli, S., & Kuehn, M. J. (2006). Outer membrane vesicle production by Escherichia coli is independent of membrane instability. Journal of Bacteriology, 188(15), 5385–5392. https://doi.org/10.1128/JB.00498-06
  • Molina, D. M., Cornvik, T., Eshaghi, S., Haeggström, J. Z., Nordlund, P., & Sabet, M. I. (2008). Engineering membrane protein overproduction in Escherichia coli. Protein Science: A Publication of the Protein Society, 17(4), 673–680. https://doi.org/10.1110/ps.073242508
  • Moradi, S., Hosseini, E., Abdoli, M., Khani, S., & Shahlaei, M. (2019). Comparative molecular dynamic simulation study on the use of chitosan for temperature stabilization of interferon αII. Carbohydrate Polymers, 203, 52–59. https://doi.org/10.1016/j.carbpol.2018.09.032
  • Muhammed, M. T., & Aki-Yalcin, E. (2019). Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chemical Biology & Drug Design, 93(1), 12–20. https://doi.org/10.1111/cbdd.13388
  • Nandan, A. S., & Nampoothiri, K. M. (2014). Unveiling aminopeptidase P from Streptomyces lavendulae: Molecular cloning, expression and biochemical characterization. Enzyme and Microbial Technology, 55, 7–13. https://doi.org/10.1016/j.enzmictec.2013.11.003
  • Nandan, A., & Nampoothiri, K. M. (2015). Biochemical and structural analysis of a site directed mutant of manganese dependent aminopeptidase P from Streptomyces lavendulae. Journal of BioScience & Biotechnology, 4(2), 109–116.
  • Noorbatcha, I. A., Sultan, A. M., Salleh, H. M., & Amid, A. (2013). Understanding thermostability factors of aspergillus niger PhyA phytase: A molecular dynamics study. The Protein Journal, 32(4), 309–316. https://doi.org/10.1007/s10930-013-9489-y
  • Omar, M. N., Noor, R., Raja, Z., Rahman, A., Dina, N., Noor, M., Latip, W., Knight, V. F., Shukuri, M., & Ali, M. (2021). Structure-function and industrial relevance of bacterial aminopeptidase P. Catalysts, 11(10), 1157. https://doi.org/10.3390/catal11101157
  • Peng, C. T., Liu, L., Li, C. C., He, L. H., Li, T., Shen, Y. L., Gao, C., Wang, N. Y., Xia, Y., Zhu, Y. B., Song, Y. J., Lei, Q., Yu, L. T., & Bao, R. (2017). Structure-function relationship of aminopeptidase P from Pseudomonas aeruginosa. Frontiers in Microbiology, 8(DEC), 2385. https://doi.org/10.3389/fmicb.2017.02385
  • Prejanò, M., Alberto, M. E., Russo, N., Toscano, M., & Marino, T. (2020). The effects of the metal ion substitution into the active site of metalloenzymes: A theoretical insight on some selected cases. Catalysts, 10(9), 1038. https://doi.org/10.3390/catal10091038
  • Quezada, G. R., Rozas, R. E., & Toledo, P. G. (2017). molecular dynamics simulations of quartz (101)-water and corundum (001)-water interfaces: Effect of surface charge and ions on cation adsorption, water orientation, and surface charge reversal. The Journal of Physical Chemistry C, 121(45), 25271–25282. https://doi.org/10.1021/acs.jpcc.7b08836
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configuration. Journal of Molecular Biology, 7(1), 95–99. https://doi.org/10.1016/s0022-2836(63)80023-6
  • Rawlings, N. D., Waller, M., Barrett, A. J., & Bateman, A. (2014). MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 42(Database issue), D503–D509. https://doi.org/10.1093/nar/gkt953
  • Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. Essays in Biochemistry, 59, 1–41. https://doi.org/10.1042/BSE0590001
  • Salleh, A. B. (2012). The role of Arg157Ser in improving the compactness and stability of ARM lipase. Journal of Computer Science & Systems Biology, 05(02), 39–46. https://doi.org/10.4172/jcsb.1000088
  • Santiago, M., Ramírez-Sarmiento, C. A., Zamora, R. A., & Parra, L. P. (2016). Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Frontiers in Microbiology, 7(SEP), 1408. https://doi.org/10.3389/fmicb.2016.01408
  • Siddiqui, K. S., & Cavicchioli, R. (2006). Cold-adapted enzymes. Annual Review of Biochemistry, 75(1), 403–433. https://doi.org/10.1146/annurev.biochem.75.103004.142723
  • Singh, R., Jamdar, S. N., Goyal, V. D., Kumar, A., Ghosh, B., & Makde, R. D. (2017). Structure of the human aminopeptidase XPNPEP3 and comparison of its in vitro activity with Icp55 orthologs: Insights into diverse cellular processes. The Journal of Biological Chemistry, 292(24), 10035–10047. https://doi.org/10.1074/jbc.M117.783357
  • Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: Industrial progress in 21st century. 3 Biotech, 6(2), 1–15. https://doi.org/10.1007/s13205-016-0485-8
  • Sočan, J., Isaksen, G. V., Brandsdal, B. O., & Åqvist, J. (2019). Towards rational computational engineering of psychrophilic enzymes. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-55697-4
  • Sočan, J., Kazemi, M., Isaksen, G. V., Brandsdal, B. O., & Åqvist, J. (2018). Catalytic adaptation of psychrophilic elastase. Biochemistry, 57(20), 2984–2993. https://doi.org/10.1021/acs.biochem.8b00078
  • Sočan, J., Purg, M., & Åqvist, J. (2020). Computer simulations explain the anomalous temperature optimum in a cold-adapted enzyme. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-16341-2
  • Stöckel-Maschek, A., Stiebitz, B., Koelsch, R., & Neubert, K. (2003). A continuous fluorimetric assay for aminopeptidase P detailed analysis of product inhibition. Analytical Biochemistry, 322(1), 60–67. https://doi.org/10.1016/S0003-2697(03)00464-0
  • Stressler, T., Eisele, T., Schlayer, M., & Fischer, L. (2012). Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481. AMB Express, 2(1), 39. https://doi.org/10.1186/2191-0855-2-39
  • Su, R., Zhang, W., Zhu, M., Xu, S., Yang, M., & Li, D. (2013). Alkaline protease immobilized on graphene oxide: Highly efficient catalysts for the proteolysis of waste-activated sludge. Polish Journal of Environmental Studies, 22(3), 885–891.
  • Tuttle, R. R., Rubin, H. N., Rithner, C. D., Finke, R. G., & Reynolds, M. M. (2019). Copper ion vs copper metal–organic framework catalyzed NO release from bioavailable S-Nitrosoglutathione en route to biomedical applications: Direct 1H NMR monitoring in water allowing identification of the distinct, true reaction stoichiometries and thiol dependencies. Journal of Inorganic Biochemistry, 199, 110760. https://doi.org/10.1016/j.jinorgbio.2019.110760
  • Wang, Y., Hou, Y., Wang, Y., Zheng, L., Xu, X., Pan, K., Li, R., & Wang, Q. (2018). A novel cold-adapted leucine dehydrogenase from antarctic sea-ice bacterium pseudoalteromonas sp. ANT178. Marine Drugs, 16(10), 359. https://doi.org/10.3390/md16100359
  • Wang, X., Kan, G., Ren, X., Yu, G., Shi, C., Xie, Q., Wen, H., & Betenbaugh, M. (2018). Molecular cloning and characterization of a novel -Amylase from antarctic sea ice bacterium pseudoalteromonas sp. M175 and its primary application in detergent. BioMed Research International, 2018, 3258383. https://doi.org/10.1155/2018/3258383
  • Wilce, M. C. J., Bond, C. S., Dixon, N. E., Freeman, H. C., Guss, J. M., Lilley, P. E., & Wilce, J. A. (1998). Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3472–3477. https://doi.org/10.1073/pnas.95.7.3472
  • Yang, M., Zheng, J., Jia, H., & Song, M. (2016). Functional characterization of X-prolyl aminopeptidase from Toxoplasma gondii. Parasitology, 143(11), 1443–1449. https://doi.org/10.1017/S0031182016000986
  • Yang, H., Zhu, Q., Zhou, N., & Tian, Y. (2016). Optimized expression of prolyl aminopeptidase in Pichia pastoris and its characteristics after glycosylation. World Journal of Microbiology and Biotechnology, 32(11), 1–11. https://doi.org/10.1007/s11274-016-2135-z
  • Yu, X. W., Tan, N. J., Xiao, R., & Xu, Y. (2012). Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: Increased thermostability and altered acyl chain length specificity. PLoS One, 7(10), e46388. https://doi.org/10.1371/journal.pone.0046388
  • Yu, J. F., Yang, Y. D., Sun, X., & Wang, J. H. (2015). Sequence and structure analysis of biological molecules based on computational methods. BioMed Research International, 2015, 565328–565323. https://doi.org/10.1155/2015/565328

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.