54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the structural basis of piperine targeting AKT1 against prostate cancer through in vitro and molecular dynamics simulations

, &
Received 09 Jan 2024, Accepted 11 Mar 2024, Published online: 26 Mar 2024

References

  • Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A., Kozlowski, J. M., & McEwan, R. N. (1987). A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Research, 47(12), 3239–3245.
  • Badmaev, V., Majeed, M., & Prakash, L. (2000). Piperine derived from black pepper increases the plasma levels of coenzyme Q10 following oral supplementation. The Journal of Nutritional Biochemistry, 11(2), 109–113. https://doi.org/10.1016/s0955-2863(99)00074-1
  • Bai, B., Chen, Q., Jing, R., He, X., Wang, H., Ban, Y., Ye, Q., Xu, W., & Zheng, C. (2021). Molecular basis of prostate cancer and natural products as potential chemotherapeutic and chemopreventive agents. Frontiers in Pharmacology, 12, 738235. https://doi.org/10.3389/fphar.2021.738235
  • Bellacosa, A., Kumar, C. C., Di Cristofano, A., & Testa, J. R. (2005). Activation of AKT kinases in cancer: Implications for therapeutic targeting. Advances in Cancer Research, 94, 29–86. https://doi.org/10.1016/S0065-230X(05)94002-5
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Chen, J. (2016). Drug resistance mechanisms of three mutations V32I, I47V and V82I in HIV-1 protease toward inhibitors probed by molecular dynamics simulations and binding free energy predictions. RSC Advances, 6(63), 58573–58585. https://doi.org/10.1039/C6RA09201B
  • Cheung, M., & Testa, J. R. (2013). Diverse mechanisms of AKT pathway activation in human malignancy. Current Cancer Drug Targets, 13(3), 234–244. https://doi.org/10.2174/1568009611313030002
  • Chonpathompikunlert, P., Wattanathorn, J., & Muchimapura, S. (2010). Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 48(3), 798–802. https://doi.org/10.1016/j.fct.2009.12.009
  • Chopra, N., Wales, T. E., Joseph, R. E., Boyken, S. E., Engen, J. R., Jernigan, R. L., & Andreotti, A. H. (2016). Dynamic allostery mediated by a conserved tryptophan in the TEC family kinases. PLoS Computational Biology, 12(3), e1004826. https://doi.org/10.1371/journal.pcbi.1004826
  • de Souza, A. S., Pacheco, B. D. C., Pinheiro, S., Muri, E. M. F., Dias, L. R. S., Lima, C. H. S., Garrett, R., de Moraes, M. B. M., de Souza, B. E. G., & Puzer, L. (2019). 3-Acyltetramic acids as a novel class of inhibitors for human kallikreins 5 and 7. Bioorganic & Medicinal Chemistry Letters, 29(9), 1094–1098. https://doi.org/10.1016/j.bmcl.2019.02.031
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • DasNandy, A., Patil, V. S., Hegde, H. V., Harish, D. R., & Roy, S. (2022). Elucidating type 2 diabetes mellitus risk factor by promoting lipid metabolism with gymnemagenin: An in vitro and in silico approach. Frontiers in Pharmacology, 13, 1074342. https://doi.org/10.3389/fphar.2022.1074342
  • de Almeida, G. C., Oliveira, L. F. S., Predes, D., Fokoue, H. H., Kuster, R. M., Oliveira, F. L., Mendes, F. A., & Abreu, J. G. (2020). Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells. Scientific Reports, 10(1), 11681. https://doi.org/10.1038/s41598-020-68574-2
  • Do, M. T., Kim, H. G., Choi, J. H., Khanal, T., Park, B. H., Tran, T. P., Jeong, T. C., & Jeong, H. G. (2013). Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chemistry, 141(3), 2591–2599. https://doi.org/10.1016/j.foodchem.2013.04.125
  • Frauenfelder, H., Sligar, S. G., & Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science (New York, N.Y.), 254(5038), 1598–1603. https://doi.org/10.1126/science.1749933
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hua, H., Zhang, H., Chen, J., Wang, J., Liu, J., & Jiang, Y. (2021). Targeting Akt in cancer for precision therapy. Journal of Hematology & Oncology, 14(1), 128. https://doi.org/10.1186/s13045-021-01137-8
  • Ichiye, T., & Karplus, M. (1991). Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins, 11(3), 205–217. https://doi.org/10.1002/prot.340110305
  • Kakarala, M., Brenner, D. E., Korkaya, H., Cheng, C., Tazi, K., Ginestier, C., Liu, S., Dontu, G., & Wicha, M. S. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122(3), 777–785. https://doi.org/10.1007/s10549-009-0612-x
  • Karplus, M., & Petsko, G. A. (1990). Molecular dynamics simulations in biology. Nature, 347(6294), 631–639. https://doi.org/10.1038/347631a0
  • Khanal, P., Patil, V. S., Bhandare, V. V., Dwivedi, P. S. R., Shastry, C. S., Patil, B. M., Gurav, S. S., Harish, D. R., & Roy, S. (2022). Computational investigation of benzalacetophenone derivatives against SARS-CoV-2 as potential multi-target bioactive compounds. Computers in Biology and Medicine, 146, 105668. https://doi.org/10.1016/j.compbiomed.2022.105668
  • Khanal, P., Patil, V. S., Bhandare, V. V., Patil, P. P., Patil, B. M., Dwivedi, P. S. R., Bhattacharya, K., Harish, D. R., & Roy, S. (2022). Systems and in vitro pharmacology profiling of diosgenin against breast cancer. Frontiers in Pharmacology, 13, 1052849. https://doi.org/10.3389/fphar.2022.1052849
  • Khanam, R., Kumar, R., Hejazi, I. I., Shahabuddin, S., Meena, R., Jayant, V., Kumar, P., Bhat, A. R., & Athar, F. (2018). Piperazine clubbed with 2-azetidinone derivatives suppresses proliferation, migration and induces apoptosis in human cervical cancer HeLa cells through oxidative stress mediated intrinsic mitochondrial pathway. Apoptosis: An International Journal on Programmed Cell Death, 23(2), 113–131. https://doi.org/10.1007/s10495-018-1439-x
  • Klein, S., & Levitzki, A. (2009). Targeting the EGFR and the PKB pathway in cancer. Current Opinion in Cell Biology, 21(2), 185–193. https://doi.org/10.1016/j.ceb.2008.12.006
  • Koleva, I. I., van Beek, T. A., Soffers, A. E., Dusemund, B., & Rietjens, I. M. (2012). Alkaloids in the human food chain–natural occurrence and possible adverse effects. Molecular Nutrition & Food Research, 56(1), 30–52. https://doi.org/10.1002/mnfr.201100165
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa□ A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laberge, M., & Yonetani, T. (2008). Molecular dynamics simulations of hemoglobin A in different states and bound to DPG: Effector-linked perturbation of tertiary conformations and HbA concerted dynamics. Biophysical Journal, 94(7), 2737–2751. https://doi.org/10.1529/biophysj.107.114942
  • Lai, L. H., Fu, Q. H., Liu, Y., Jiang, K., Guo, Q. M., Chen, Q. Y., Yan, B., Wang, Q. Q., & Shen, J. G. (2012). Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacologica Sinica, 33(4), 523–530. https://doi.org/10.1038/aps.2011.209
  • Lange, O. F., & Grubmüller, H. (2006). Generalized correlation for biomolecular dynamics. Proteins, 62(4), 1053–1061. https://doi.org/10.1002/prot.20784
  • Laubenbacher, R., Hower, V., Jarrah, A., Torti, S. V., Shulaev, V., Mendes, P., Torti, F. M., & Akman, S. (2009). A systems biology view of cancer. Biochimica et Biophysica Acta, 1796(2), 129–139. https://doi.org/10.1016/j.bbcan.2009.06.001
  • Levy, R. M., Srinivasan, A. R., Olson, W. K., & McCammon, J. A. (1984). Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers, 23(6), 1099–1112. https://doi.org/10.1002/bip.360230610
  • Lombardi, A. P. G., Cavalheiro, R. P., Porto, C. S., & Vicente, C. M. (2021). Estrogen receptor signaling pathways involved in invasion and colony formation of androgen-independent prostate cancer cells PC-3. International Journal of Molecular Sciences, 22(3), 1153. https://doi.org/10.3390/ijms22031153
  • Madhavi, B. B., Nath, A. R., Banji, D., Madhu, M. N., Ramalingam, R., & Swetha, D. (2009). Extraction, identification, formulation and evaluation of piperine in alginate beads. Int. J. Pharm. Pharm. Sci., 1, 156–161.
  • Manning, B. D., & Cantley, L. C. (2007). AKT/PKB signaling: Navigating downstream. Cell, 129(7), 1261–1274. https://doi.org/10.1016/j.cell.2007.06.009
  • Migliaccio, E., Giorgio, M., & Pelicci, P. G. (2006). Apoptosis and aging: Role of p66Shc redox protein. Antioxidants & Redox Signaling, 8(3-4), 600–608. https://doi.org/10.1089/ars.2006.8.600
  • Mirza, Z., & Karim, S. (2023). Structure-based profiling of potential phytomolecules with AKT1 a key cancer drug target. Molecules (Basel, Switzerland), 28(6), 2597. https://doi.org/10.3390/molecules28062597
  • Mishra, S. K., & Jernigan, R. L. (2018). Protein dynamic communities from elastic network models align closely to the communities defined by molecular dynamics. PLoS One, 13(6), e0199225. https://doi.org/10.1371/journal.pone.0199225
  • Mittal, R., & Gupta, R. L. (2000). In vitro antioxidant activity of piperine. Methods and Findings in Experimental and Clinical Pharmacology, 22(5), 271–274. https://doi.org/10.1358/mf.2000.22.5.796644
  • Morgan, T. M., Koreckij, T. D., & Corey, E. (2009). Targeted therapy for advanced prostate cancer: Inhibition of the PI3K/Akt/mTOR pathway. Current Cancer Drug Targets, 9(2), 237–249. https://doi.org/10.2174/156800909787580999
  • Nair, H. K., Rao, K. V., Aalinkeel, R., Mahajan, S., Chawda, R., & Schwartz, S. A. (2004). Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clinical and Vaccine Immunology, 11(1), 63–69. https://doi.org/10.1128/CDLI.11.1.63-69.2004
  • Nandhakumar, S., Parasuraman, S., Shanmugam, M. M., Rao, K. R., Chand, P., & Bhat, B. V. (2011). Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). Journal of Pharmacology & Pharmacotherapeutics, 2(2), 107–111. https://doi.org/10.4103/0976-500X.81903
  • Nayana, P., Manjunatha, H., Gollapalli, P., Ashok, A. K., Karal Andrade, P., & V, V. (2023). A combined in vitro and molecular dynamics simulation studies unveil the molecular basis of the anticancer potential of piperine targeting AKT1 against prostate cancer. Journal of Biomolecular Structure & Dynamics, 1–14. Advance online publication https://doi.org/10.1080/07391102.2023.2220045
  • Olive, P. L., Banáth, J. P., & Durand, R. E. (1990). Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the ‘comet’ assay. Radiation Research, 122(1), 86–94. https://doi.org/10.2307/3577587
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006
  • Park, S., Kim, D., Kaneko, S., Szewczyk, K. M., Nicosia, S. V., Yu, H., Jove, R., & Cheng, J. Q. (2016). Molecular cloning and characterization of the human AKT1 promoter uncovers its up-regulation by the Src/Stat3 pathway. The Journal of Biological Chemistry, 291(43), 22844. https://doi.org/10.1074/jbc.A116.504011
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Rather, R. A., & Bhagat, M. (2018). Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Frontiers in Cell and Developmental Biology, 6, 10. https://doi.org/10.3389/fcell.2018.00010
  • Saffari-Chaleshtori, J., Heidari-Sureshjani, E., Moradi, F., Jazi, H. M., & Heidarian, E. (2017). The study of apoptosis-inducing effects of three pre-apoptotic factors by gallic acid, using simulation analysis and the comet assay technique on the prostatic cancer cell line PC3. The Malaysian Journal of Medical Sciences: MJMS, 24(4), 18–29. https://doi.org/10.21315/mjms2017.24.4.3
  • Samykutty, A., Shetty, A. V., Dakshinamoorthy, G., Bartik, M. M., Johnson, G. L., Webb, B., Zheng, G., Chen, A., Kalyanasundaram, R., & Munirathinam, G. (2013). Piperine, a bioactive component of pepper spice exerts therapeutic effects on androgen dependent and androgen independent prostate cancer cells. PLoS One, 8(6), e65889. https://doi.org/10.1371/journal.pone.0065889
  • Selvendiran, K., Banu, S. M., & Sakthisekaran, D. (2004). Protective effect of piperine on benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Clinica Chimica Acta; International Journal of Clinical Chemistry, 350(1-2), 73–78. https://doi.org/10.1016/j.cccn.2004.07.004
  • Tekpinar, M., Neron, B., & Delarue, M. (2021). Extracting dynamical correlations and identifying key residues for allosteric communication in proteins by correlationplus. Journal of Chemical Information and Modeling, 61(10), 4832–4838. https://doi.org/10.1021/acs.jcim.1c00742
  • Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., & Sasaki, Y. F. (2000). Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35(3), 206–221. https://doi.org/10.1002/(sici)1098-2280(2000)35:3<206:
  • Toyoda, T., Shi, L., Takasu, S., Cho, Y. M., Kiriyama, Y., Nishikawa, A., Ogawa, K., Tatematsu, M., & Tsukamoto, T. (2016). Anti-inflammatory effects of capsaicin and piperine on helicobacter pylori-induced chronic gastritis in mongolian gerbils. Helicobacter, 21(2), 131–142. https://doi.org/10.1111/hel.12243
  • Tsai, C. J., Ma, B., & Nussinov, R. (1999). Folding and binding cascades: Shifts in energy landscapes. Proceedings of the National Academy of Sciences of the United States of America, 96(18), 9970–9972. https://doi.org/10.1073/pnas.96.18.9970
  • van Rijn, J., & van den Berg, J. (1997). Flavonoids as enhancers of x-ray-induced cell damage in hepatoma cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 3(10), 1775–1779.
  • Volak, L. P., Ghirmai, S., Cashman, J. R., & Court, M. H. (2008). Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36(8), 1594–1605. https://doi.org/10.1124/dmd.108.020552
  • Wu, D., Zhou, Y., Pan, H., Qu, P., & Zhou, J. (2015). microRNA-99a inhibits cell proliferation, colony formation ability, migration and invasion by targeting fibroblast growth factor receptor 3 in prostate cancer. Molecular Medicine Reports, 11(2), 1469–1475. https://doi.org/10.3892/mmr.2014.2792
  • Yaffe, P. B., Doucette, C. D., Walsh, M., & Hoskin, D. W. (2013). Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells. Experimental and Molecular Pathology, 94(1), 109–114. https://doi.org/10.1016/j.yexmp.2012.10.008
  • Yaraguppi, D. A., Bagewadi, Z. K., Deshpande, S. H., & Chandramohan, V. (2022). In silico study on the inhibition of UDP-N-acetylglucosamine 1-carboxy vinyl transferase from Salmonella typhimurium by the lipopeptide produced from Bacillus aryabhattai. International Journal of Peptide Research and Therapeutics, 28(3), 80. https://doi.org/10.1007/s10989-022-10388-z
  • Ying, X., Chen, X., Cheng, S., Shen, Y., Peng, L., & Xu, H. Z. (2013). Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. International Immunopharmacology, 17(2), 293–299. https://doi.org/10.1016/j.intimp.2013.06.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.