81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Water-soluble Pillar[5]arene-based drug candidates for lung and breast cancer

, , , & ORCID Icon
Received 09 Jan 2024, Accepted 11 Mar 2024, Published online: 25 Mar 2024

References

  • Atacan, K., Kursunlu, A. N., & Ozmen, M. (2019). Preparation of pillar[5]arene immobilized trypsin and its application in microwave-assisted digestion of cytochrome c. Materials Science & Engineering. C, Materials for Biological Applications, 94, 886–893. https://doi.org/10.1016/j.msec.2018.10.043
  • Bai, H., Wang, J., Li, Z., & Tang, G. (2019). Macrocyclic compounds for drug and gene delivery in ımmune-modulating therapy. International Journal of Molecular Sciences, 20(9), 2097. https://doi.org/10.3390/ijms20092097
  • Cao, J., Zhu, H., Shangguan, L., Liu, Y., Liu, P., Li, Q., Wu, Y., & Huang, F. (2021). A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution. Polymer Chemistry, 12(24), 3517–3521. https://doi.org/10.1039/D1PY00535A
  • Chang, Y., Chen, J.-Y., Yang, J., Lin, T., Zeng, L., Xu, J.-F., Hou, J.-L., & Zhang, X. (2019). Targeting the cell membrane by charge-reversal amphiphilic pillar[5]arene for the selective killing of cancer cells. ACS Applied Materials & İnterfaces, 11(42), 38497–38502. https://doi.org/10.1021/acsami.9b13492
  • Cregan, S. P., Dawson, V. L., & Slack, R. S. (2004). Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene, 23(16), 2785–2796. https://doi.org/10.1038/sj.onc.1207517
  • DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., Jemal, A., & Siegel, R. L. (2019). Breast cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(6), 438–451. https://doi.org/10.3322/caac.21583
  • Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337
  • García-Fernández, C., Fornaguera, C., & Borrós, S. (2020). Nanomedicine in non-small cell lung cancer: From conventional treatments to ımmunotherapy. Cancers, 12(6), 1609. https://doi.org/10.3390/cancers12061609
  • Goedhart, J., & Luijsterburg, M. S. (2020). VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Scientific Reports, 10(1), 20560. https://doi.org/10.1038/s41598-020-76603-3
  • Gunes, C. E., Karaselek, M. A., Kursunlu, A. N., Ozmen, M., & Kurar, E. (2020). Synthesis and evaluation of anticancer effect of a novel molecule based-on pillar[5]arene including multi quinoline units. Medicinal Chemistry Research, 29(6), 1077–1083. https://doi.org/10.1007/s00044-020-02547-y
  • Günsel, A., Yazar, B., Taslimi, P., Erden, Y., Taskin-Tok, T., Pişkin, H., Bilgiçli, A. T., Yarasir, M. N., & Gülçin, İ. (2023). Gülçin Novel tetrakis–phthalocyanines bearing pyrimidine derivative: Crystal XRD analysis, enzyme inhibition, molecular docking, and anticancer effects. Journal of Biomolecular Structure & Dynamics, 41(1), 249–262. https://doi.org/10.1080/07391102.2021.2004923
  • Günsel, A., Yıldırım, A., Taslimi, P., Erden, Y., Taskin-Tok, T., Pişkin, H., Bilgiçli, A. T., Gülçin, İ., & Nilüfer Yarasir, M. (2022). Cytotoxicity effects and biochemical investigation of novel tetrakis-phthalocyanines bearing 2-thiocytosine moieties with molecular docking studies. Inorganic Chemistry Communications, 138, 109263. https://doi.org/10.1016/j.inoche.2022.109263
  • Guo, F., Sun, Y., Xi, B., & Diao, G. (2018). Recent progress in the research on the host-guest chemistry of pillar[n]arenes. Supramolecular Chemistry, 30(2), 81–92. https://doi.org/10.1080/10610278.2017.1368512
  • Guo, F., Xia, T., Xiao, P., Wang, Q., Deng, Z., Zhang, W., & Diao, G. (2021). A supramolecular complex of hydrazide-pillar[5]arene and bisdemethoxycurcumin with potential anti-cancer activity. Bioorganic Chemistry, 110, 104764. https://doi.org/10.1016/j.bioorg.2021.104764
  • Karaselek, M. A., Kuccukturk, S., Duran, T., Kursunlu, A. N., Ozmen, M., Bozdag, C., Alkan, S., Varman, A., Yildirim, M. A., Kucukkartallar, T., & Vatansev, C. (2023). Effective anticancer agents based-on two Pillar[5]arene derivatives for pancreas cancer cell lines: synthesis, apoptotic effect, caspase pathway. Investigational New Drugs, 41(2), 202–209. https://doi.org/10.1007/s10637-023-01343-w
  • Kursunlu, A. N., Acikbas, Y., Ozmen, M., Erdogan, M., & Capan, R. (2017). Preparation of pillar[5]arene-quinoline Langmuir–Blodgett thin films for detection of volatile organic compounds with host–guest principles. The Analyst, 142(19), 3689–3698. https://doi.org/10.1039/c7an00621g
  • Kursunlu, A. N., Bastug, E., Oguz, A., Oguz, M., & Yilmaz, M. (2022). A highly branched macrocycle-based dual-channel sensor: Bodipy and pillar[5]arene combination for detection of Sn (II) &Hg (II) and bioimaging in living cells. Analytica Chimica Acta, 1196, 339542. https://doi.org/10.1016/j.aca.2022.339542
  • Liman, R., Kursunlu, A. N., Ciğerci, İH., Ozmen, M., & Acikbas, Y. (2020). Assessment of the cytotoxic and genotoxic potential of pillar[5]arene derivatives by Allium cepa roots and Drosophila melanogaster haemocytes. Ecotoxicology and Environmental Safety, 192, 110328. https://doi.org/10.1016/j.ecoenv.2020.110328
  • Liman, R., Kursunlu, A. N., Ozmen, M., Arslan, S., Mutlu, D., Istifli, E. S., & Acikbas, Y. (2022). Synthesis of water soluble symmetric and asymmetric pillar[5]arene derivatives: Cytotoxicity, apoptosis and molecular docking studies. Journal of Molecular Structure, 1265, 133482. https://doi.org/10.1016/j.molstruc.2022.133482
  • Liu, W-W., Meng, J., Cui, J., & Luan, Y-S (2017). Characterization and function of microrna∗s in plants. Frontiers in Plant Science, 8, 2200. https://doi.org/10.3389/fpls.2017.02200
  • Liu, H., Yang, J., Yan, X., Li, C., Elsabahy, M., Chen, L., Yang, Y.-W., & Gao, H. (2021). A dendritic polyamidoamine supramolecular system composed of pillar[5]arene and azobenzene for targeting drug-resistant colon cancer. Journal of Materials Chemistry. B, 9(46), 9594–9605. https://doi.org/10.1039/d1tb02134f
  • Meador, C. B., & Hata, A. N. (2020). Acquired resistance to targeted therapies in NSCLC: Updates and evolving insights. Pharmacology & Therapeutics, 210, 107522. https://doi.org/10.1016/j.pharmthera.2020.107522
  • Moshfegh, A., Salehzadeh, A., Sadat Shandiz, S. A., Shafaghi, M., Naeemi, A. S., & Salehi, S. (2019). Phytochemical analysis, antioxidant, anticancer and antibacterial properties of the caspian sea red macroalgae, Laurencia caspica. Iranian Journal of Science and Technology, Transactions A: Science, 43(1), 49–56. https://doi.org/10.1007/s40995-017-0388-5
  • Ogoshi, T., Hashizume, M., Yamagishi, T-A., & Nakamoto, Y. (2010). Chemically responsive supramolecular assemblies of pyrene-β-cyclodextrin dimer. Langmuir: The ACS Journal of Surfaces and Colloids, 26(5), 3169–3173. https://doi.org/10.1021/la903103w
  • Pirker, R. (2020). Chemotherapy remains a cornerstone in the treatment of nonsmall cell lung cancer. Current Opinion in Oncology, 32(1), 63–67. https://doi.org/10.1097/CCO.0000000000000592
  • Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D'Orazi, G. (2016). Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 8(4), 603–619. https://doi.org/10.18632/aging.100934
  • Roy, P. S., & Saikia, B. J. (2016). Cancer and cure: A critical analysis. Indian Journal of Cancer, 53(3), 441–442. https://doi.org/10.4103/0019-509X.200658
  • Shandiz, S. A. S., Khosravani, M., Mohammadi, S., Noorbazargan, H., Mirzaie, A., Inanlou, D. N., Jalali, M. D., Jouzaghkar, H., Baghbani-Arani, F., & Keshavarz-Pakseresht, B. (2016). Evaluation of imatinib mesylate (Gleevec) on KAI1/CD82 gene expression in breast cancer MCF-7 cells using quantitative real-time PCR. Asian Pacific Journal of Tropical Biomedicine, 6(2), 159–163. https://doi.org/10.1016/j.apjtb.2015.10.006
  • Shettar, A. K., Madagi, S. B., & Vedamurthy, A. B. (2018). Phytochemical Screening and ın-vitro antioxidant and antiproliferative activity of aqueous leaf extract of ximenia americana against non- small cell lung cancer. Cancer Surgery, 03(01), 117. https://doi.org/10.4172/2573-542X.1000117
  • Shurpik, D. N., Sevastyanov, D. A., Zelenikhin, P. V., Padnya, P. L., Evtugyn, V. G., Osin, Y. N., & Stoikov, I. I. (2020). Nanoparticles based on the zwitterionic pillar[5]arene and Ag+: Synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549. Beilstein Journal of Nanotechnology, 11, 421–431. https://doi.org/10.3762/bjnano.11.33
  • Stepanova, V. B., Shurpik, D. N., Evtugyn, V. G., Stoikov, I. I., Evtugyn, G. A., Osin, Y., & Hianik, T. (2016). Label-free electrochemical aptasensor for cytochrome c detection using pillar[5]arene bearing neutral red. Sensors and Actuators B: Chemical, 225, 57–65. https://doi.org/10.1016/j.snb.2015.11.023
  • Tait, S. W. G., & Green, D. R. (2008). Caspase-independent cell death: Leaving the set without the final cut. Oncogene, 27(50), 6452–6461. https://doi.org/10.1038/onc.2008.311
  • Toss, A., Grandi, G., Cagnacci, A., Marcheselli, L., Pavesi, S., De Matteis, E., Razzaboni, E., Tomasello, C., Cascinu, S., & Cortesi, L. (2017). The impact of reproductive life on breast cancer risk in women with family history or BRCA mutation. Oncotarget, 8(6), 9144–9154. https://doi.org/10.18632/oncotarget.13423
  • Vafaei, S., Sadat Shandiz, S. A., & Piravar, Z. (2020). Zinc-phosphate nanoparticles as a novel anticancer agent: an ın vitro evaluation of their ability to ınduce apoptosis. Biological Trace Element Research, 198(1), 109–117. https://doi.org/10.1007/s12011-020-02054-6
  • Wang, Y., Wang, D., Wang, J., Wang, C., Wang, J., Ding, Y., & Yao, Y. (2022). Pillar[5]arene-derived covalent organic materials with pre-encoded molecular recognition for targeted and synergistic cancer photo- and chemotherapy. Chemical Communications (Cambridge, England), 58(11), 1689–1692. https://doi.org/10.1039/d1cc07072j
  • Wang, Y., Wen, Y., Qu, Y., Pei, Z., & Pei, Y. (2022). Pillar[5]arene based glyco-targeting nitric oxide nanogenerator for hyperthermia-induced triple-mode cancer therapy. Journal of Colloid and İnterface Science, 615, 386–394. https://doi.org/10.1016/j.jcis.2022.01.189
  • Yang, M., Yang, K., Gao, B., Wang, P., Li, T., Zheng, Y., Pei, Y., Pei, Z., & Lv, Y. (2022). A supramolecular nano-delivery system based on AIE PARP inhibitor prodrug and glycosylated pillar[5]arene for drug-resistance therapy. Chemical Communications (Cambridge, England), 58(79), 11147–11150. https://doi.org/10.1039/d2cc04238j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.