172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of novel peptide inhibitors of Plasmodium falciparum dihydrofolate reductase (PfDHFR): molecular docking and MD simulation studies

, , , , & ORCID Icon
Received 02 Dec 2023, Accepted 20 Mar 2024, Published online: 30 Apr 2024

References

  • Abdullahi, M., Uzairu, A., Shallangwa, G. A., Mamza, P. A., Ibrahim, M. T., Chandra, A., & Goel, V. K. (2024). In-silico molecular modelling studies of some camphor imine based compounds as anti-influenza A (H1N1) pdm09 virus agents. Journal of Biomolecular Structure & Dynamics, 42(4), 2013–2033. https://doi.org/10.1080/07391102.2023.2209654
  • Adane, L., & Bharatam, P. (2008). Modelling and informatics in the analysis of P. falciparum DHFR enzyme inhibitors. Current Medicinal Chemistry, 15(16), 1552–1569. https://doi.org/10.2174/092986708784911551
  • Adane, L., Bharatam, P. V., & Sharma, V. (2010). A common feature-based 3D-pharmacophore model generation and virtual screening: Identification of potential PfDHFR inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(5), 635–645. https://doi.org/10.3109/14756360903393817
  • Aher, R. B., & Roy, K. (2019). Design of antimalarial transmission blocking agents: Pharmacophore mapping of ligands active against stage-V mature gametocytes of Plasmodium falciparum. Journal of Biomolecular Structure & Dynamics, 37(14), 3660–3673. https://doi.org/10.1080/07391102.2018.1524333
  • Amir, M., Kumar, V., Mohammad, T., Dohare, R., Hussain, A., Rehman, M. T., Alam, P., Alajmi, M. F., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Investigation of deleterious effects of nsSNPs in the POT1 gene: A structural genomics-based approach to understand the mechanism of cancer development. Journal of Cellular Biochemistry, 120(6), 10281–10294. https://doi.org/10.1002/jcb.28312
  • Bairagya, H. R., Tasneem, A., Rai, G. P., & Reyaz, S. (2022). New biochemical insights into the dynamics of water molecules at the GMP or IMP binding site of human GMPR enzyme: A molecular dynamics study. Proteins, 90(1), 200–217. https://doi.org/10.1002/prot.26207
  • Bhagat, S., Arfeen, M., Das, G., Ramkumar, M., Khan, S. I., Tekwani, B. L., & Bharatam, P. V. (2019). Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents. Bioorganic Chemistry, 91, 103094. https://doi.org/10.1016/J.BIOORG.2019.103094
  • Crawley, J., Chu, C., Nosten, F., & Mtove, G. (2010). Malaria in children. Lancet (London, England), 375(9724), 1468–1481. https://doi.org/10.1016/S0140-6736(10)60447-3
  • Dash, R., Yadav, M., Biswal, J., Chandra, A., Goel, V. K., Sharma, T., Prusty, S. K., & Mohapatra, S. (2023). Modeling of chitosan modified PLGA atorvastatin-curcumin conjugate (AT-CU) nanoparticles, overcoming the barriers associated with PLGA: An approach for better management of atherosclerosis. International Journal of Pharmaceutics, 640, 123009. https://doi.org/10.1016/j.ijpharm.2023.123009
  • Desai, P. V., & Avery, M. A. (2004). Structural characterization of vivapain-2 and vivapain-3, cysteine proteases from plasmodium vivax: Comparative protein modeling and docking studies. Journal of Biomolecular Structure & Dynamics, 21(6), 781–790. https://doi.org/10.1080/07391102.2004.10506968
  • Devi, K., Yadav, J. V., Gupta, R. K., Chandra, A., & Goel, V. K. (2023). Identification of potential dipeptide inhibitors for PfENR enzyme in fatty acid biosynthesis pathway II: A computational study for developing novel antimalarials. Indian Journal of Pure & Applied Physics, 61, 803–806. https://doi.org/10.56042/ijpap.v61i9.3064
  • Flannery, E. L., Chatterjee, A. K., & Winzeler, E. A. (2013). Antimalarial drug discovery-approaches and progress towards new medicines. Nature Reviews. Microbiology, 11(12), 849–862. https://doi.org/10.1038/nrmicro3138
  • Ghosh, A., Chakraborty, M., Chandra, A., & Alam, M. P. (2021). Structure-activity relationship (SAR) and molecular dynamics study of withaferin-A fragment derivatives as potential therapeutic lead against main protease (Mpro) of SARS-CoV-2. Journal of Molecular Modeling, 27(3), 97. https://doi.org/10.1007/s00894-021-04703-6
  • Greenwood, B. M., Fidock, D. A., Kyle, D. E., Kappe, S. H. I., Alonso, P. L., Collins, F. H., & Duffy, P. E. (2008). Malaria: Progress, perils, and prospects for eradication. The Journal of Clinical Investigation, 118(4), 1266–1276. https://doi.org/10.1172/JCI33996
  • Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X., & Zhao, F. (2017). Quinoline hybrids and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry, 139, 22–47. https://doi.org/10.1016/J.EJMECH.2017.07.061
  • Iwaloye, O., Elekofehinti, O. O., Kikiowo, B., Fadipe, T. M., Akinjiyan, M. O., Ariyo, E. O., Aiyeku, O. O., & Adewumi, N. A. (2021). Discovery of traditional Chinese medicine derived compounds as wild type and mutant Plasmodium falciparum dihydrofolate reductase inhibitors: Induced fit docking and ADME studies. Current Drug Discovery Technologies, 18(4), 554–569. https://doi.org/10.2174/1570163817999200729122753
  • Jameel, E., Naz, H., Khan, P., Tarique, M., Kumar, J., Mumtazuddin, S., Ahamad, S., Islam, A., Ahmad, F., Hoda, N., & Hassan, M. I. (2017). Design, synthesis, and biological evaluation of pyrimidine derivatives as potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. Chemical Biology & Drug Design, 89(5), 741–754. https://doi.org/10.1111/cbdd.12898
  • Jones, R. A., Panda, S. S., & Hall, C. D. (2015). Quinine conjugates and quinine analogues as potential antimalarial agents. European Journal of Medicinal Chemistry, 97(1), 335–355. https://doi.org/10.1016/J.EJMECH.2015.02.002
  • Joshi, A. A., & Viswanathan, C. L. (2006). Recent developments in antimalarial drug discovery. Anti-Infective Agents in Medicinal Chemistry, 5(1), 105–122. https://doi.org/10.2174/187152106774755626
  • Kaur, K., Jain, M., Reddy, R. P., & Jain, R. (2010). Quinolines and structurally related heterocycles as antimalarials. European Journal of Medicinal Chemistry, 45(8), 3245–3264. https://doi.org/10.1016/J.EJMECH.2010.04.011
  • McNamara, C. W., Lee, M. C., Lim, C. S., Lim, S. H., Roland, J., Simon, O., Yeung, B. K., Chatterjee, A. K., McCormack, S. L., Manary, M. J., Zeeman, A.-M., Dechering, K. J., Kumar, T. S., Henrich, P. P., Gagaring, K., Ibanez, M., Kato, N., Kuhen, K. L., Fischli, C., … Winzeler, E. A. (2013). Targeting Plasmodium PI(4)K to eliminate malaria. Nature, 504(7479), 248–253. https://doi.org/10.1038/NATURE12782
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/JCC.21256
  • Mueller, I., Zimmerman, P. A., & Reeder, J. C. (2007). Plasmodium malariae and Plasmodium ovale—the “bashful” malaria parasites. Trends in Parasitology, 23(6), 278–283. https://doi.org/10.1016/J.PT.2007.04.009
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Padghan, P. V., Mann, B., & Hati, S. (2018). Purification and characterization of antioxidative peptides derived from fermented milk (Lassi) by lactic cultures. International Journal of Peptide Research and Therapeutics, 24(2), 235–249. https://doi.org/10.1007/s10989-017-9608-2
  • Pandey, A., Shyamal, S. S., Shrivastava, R., Ekka, S., & Mali, S. N. (2022). Inhibition of Plasmodium falciparum fatty acid biosynthesis (FAS-II Pathway) by natural flavonoids: A computer-aided drug designing approach. Chemistry Africa, 5(5), 1469–1491. https://doi.org/10.1007/S42250-022-00449-7/METRICS
  • Reyaz, S., Tasneem, A., Rai, G. P., & Bairagya, H. R. (2021). Investigation of structural analogs of hydroxychloroquine for SARS-CoV-2 main protease (Mpro): A computational drug discovery study. Journal of Molecular Graphics & Modelling, 109, 108021. https://doi.org/10.1016/j.jmgm.2021.108021
  • Shamshad, H., Bakri, R., & Mirza, A. Z. (2022). Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: Successful targets against some infectious diseases. Molecular Biology Reports, 49(7), 6659–6691. https://doi.org/10.1007/s11033-022-07266-8
  • Shamsi, A., Mohammad, T., Anwar, S., Alajmi, M. F., Hussain, A., Rehman, M. T., Islam, A., & Hassan, M. I. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Bioscience Reports, 40(6), BSR20201256. https://doi.org/10.1042/BSR20201256
  • Sharma, V. K., & Bharatam, P. V. (2020). Identification of selective inhibitors of LdDHFR enzyme using pharmacoinformatic methods. Journal of Computational Biology, 28(1), 43–59. https://doi.org/10.1089/cmb.2019.0332
  • Sharma, V. K., Kathuria, D., & Bharatam, P. V. (2022). Identification of selective Ld DHFR inhibitors using quantum chemical and molecular modeling approach Identification of selective Ld DHFR inhibitors using quantum chemical and molecular modeling approach. Journal of Biomolecular Structure & Dynamics, 40(19), 8687–8695. https://doi.org/10.1080/07391102.2021.1915182
  • Singh, I. V., & Mishra, S. (2018). Molecular docking analysis of pyrimethamine derivatives with Plasmodium falciparum dihydrofolate reductase. Bioinformation, 14(5), 232–235. https://doi.org/10.6026/97320630014232
  • Stefanucci, A., Pinnen, F., Feliciani, F., Cacciatore, I., Lucente, G., & Mollica, A. (2011). Conformationally constrained histidines in the design of peptidomimetics: Strategies for the χ-space control. International Journal of Molecular Sciences, 12(5), 2853–2890. https://doi.org/10.3390/IJMS12052853
  • Talapko, J., Škrlec, I., Alebić, T., Jukić, M., & Včev, A. (2019). Malaria: The past and the present. Microorganisms, 7(6), 179. https://doi.org/10.3390/microorganisms7060179
  • Tanramluk, D., Pakotiprapha, D., Phoochaijaroen, S., Chantravisut, P., Thampradid, S., Vanichtanankul, J., Narupiyakul, L., Akavipat, R., & Yuvaniyama, J. (2022). Resource MANORAA : A machine learning platform to guide protein-ligand design by anchors and influential distances ll Resource MANORAA : A machine learning platform to guide protein-ligand design by anchors and influential distances. Structure (London, England: (1993), 30(1), 181–189.e5. https://doi.org/10.1016/j.str.2021.09.004
  • Tibon, N. S., Ng, C. H., & Cheong, S. L. (2020). Current progress in antimalarial pharmacotherapy and multi-target drug discovery. European Journal of Medicinal Chemistry, 188, 111983. https://doi.org/10.1016/j.ejmech.2019.111983
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tse, E. G., Korsik, M., & Todd, M. H. (2019). The past, present and future of anti-malarial medicines. Malaria Journal, 18(1), 93. https://doi.org/10.1186/s12936-019-2724-z
  • Vangapandu, S., Jain, M., Kaur, K., Patil, P., Patel, S. R., & Jain, R. (2007). Recent advances in antimalarial drug development. Medicinal Research Reviews, 27(1), 65–107. https://doi.org/10.1002/med.20062
  • Varo, R., Chaccour, C., & Bassat, Q. (2020). Update on malaria. Medicina Clinica, 155(9), 395–402. https://doi.org/10.1016/J.MEDCLI.2020.05.010
  • Warhurst, D. C. (2002). Resistance to antifolates in Plasmodium falciparum, the causative agent of tropical malaria. Science Progress, 85(Pt 1), 89–111. https://doi.org/10.3184/003685002783238906
  • WHO. (2021). Word malaria report 2021. In Word Malaria report Geneva: World Health Organization. CC.
  • Yang, T., Ottilie, S., Istvan, E. S., Godinez-Macias, K. P., Lukens, A. K., Baragaña, B., Campo, B., Walpole, C., Niles, J. C., Chibale, K., Dechering, K. J., Llinás, M., Lee, M. C. S., Kato, N., Wyllie, S., McNamara, C. W., Gamo, F. J., Burrows, J., Fidock, D. A., … Winzeler, E. A., Malaria Drug Accelerator Consortium. (2021). MalDA, accelerating malaria drug discovery. Trends in Parasitology, 37(6), 493–507. https://doi.org/10.1016/j.pt.2021.01.009
  • Yuthavong, Y., Kamchonwongpaisan, S., Leartsakulpanich, U., & Chitnumsub, P. (2006). Folate metabolism as a source of molecular targets for antimalarials. Future Microbiology, 1(1), 113–125. https://doi.org/10.2217/17460913.1.1.113
  • Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S., Vanichtanankul, J., Sirawaraporn, W., Taylor, P., Walkinshaw, M. D., & Yuthavong, Y. (2003a). Insights into antifolate resistance from malarial DHFR-TS structures. Nature Structural Biology, 10(5), 357–365. https://doi.org/10.1038/nsb921
  • Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S., Vanichtanankul, J., Sirawaraporn, W., Taylor, P., Walkinshaw, M. D., & Yuthavong, Y. (2003b). Insights into antifolate resistance from malarial DHFR-TS structures. Nature Structural Biology, 10(5), 357–365. https://doi.org/10.1038/NSB921

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.