86
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discovery of azaleatin as a potential allosteric inhibitor for dengue NS2B-NS3 protease using in vitro and in silico studies

, , , , , & show all
Received 30 Nov 2023, Accepted 21 Mar 2024, Published online: 17 Jun 2024

References

  • Ahmad, I., Kuznetsov, A. E., Pirzada, A. S., Alsharif, K. F., Daglia, M., & Khan, H. (2023). Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Frontiers in Chemistry, 11, 1145974. https://doi.org/10.3389/fchem.2023.1145974
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Bekker, H., & Berendsen, H. J. C. (1998). LINCS: A linear constraint solver for molecular simulations. Article in Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H
  • Bertilsson, L., Dahl, M.-L., Dalén, P., & Al-Shurbaji, A. (2002). Molecular genetics of CYP2D6: Clinical relevance with focus on psychotropic drugs. British Journal of Clinical Pharmacology, 53(2), 111–122. https://doi.org/10.1046/j.0306-5251.2001.01548.x
  • Boojar, F., Golmohamad, S., & Tafreshi, G. (2019). Comparative study on the status of glycation precursors, advanced glycation end products, and cell viability under effects of kaempferol, myricetin, and azaleatin in HGC-27 cell line. Journal of Young Investigators, 36(1), 5–10. https://doi.org/10.22186/jyi.36.1.5-10
  • Brecher, M., Li, Z., Liu, B., Zhang, J., Koetzner, C. A., Alifarag, A., Jones, S. A., Lin, Q., Kramer, L. D., & Li, H. (2017). A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathogens, 13(5), e1006411. https://doi.org/10.1371/journal.ppat.1006411
  • Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H., Dalenberg, K., Di Costanzo, L., Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., … Zhuravleva, M. (2021). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(D1), D437–D451. https://doi.org/10.1093/nar/gkaa1038
  • Cataneo, A. H. D., Ávila, E. P., Mendes, L. A. D O., de Oliveira, V. G., Ferraz, C. R., de Almeida, M. V., Frabasile, S., Duarte dos Santos, C. N., Verri, W. A., Bordignon, J., & Wowk, P. F. (2021). Flavonoids as Molecules With Anti-Zika virus Activity. Frontiers in Microbiology, 12, 710359. https://doi.org/10.3389/fmicb.2021.710359
  • Chappell, K. J., Stoermer, M. J., Fairlie, D. P., & Young, P. R. (2008). Mutagenesis of the West Nile virus NS2B cofactor domain reveals two regions essential for protease activity. The Journal of General Virology, 89(Pt 4), 1010–1014. https://doi.org/10.1099/vir.0.83447-0
  • Chen, J., Jiang, H., Li, F., Hu, B., Wang, Y., Wang, M. X., Wang, J., & Cheng, M. (2018). Computational insight into dengue virus NS2B-NS3 protease inhibition: A combined ligand- and structure-based approach. Computational Biology and Chemistry, 77, 261–271. https://doi.org/10.1016/j.compbiolchem.2018.09.010
  • Chen, X., Li, H., Tian, L., Li, Q., Luo, J., & Zhang, Y. (2020). Analysis of the physicochemical properties of acaricides based on lipinski’s rule of five. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 27(9), 1397–1406. https://doi.org/10.1089/cmb.2019.0323
  • Dai, L., He, J., Miao, X., Guo, X., Shang, X., Wang, W., Li, B., Wang, Y., Pan, H., & Zhang, J. (2021). Multiple biological activities of Rhododendron przewalskii Maxim. Extracts and UP LC-ESI-Q-TOF/MS characterization of their phytochemical composition. Frontiers in Pharmacology, 12, 599778. https://doi.org/10.3389/fphar.2021.599778
  • Dang, M., Lim, L., Roy, A., & Song, J. (2022). Myricetin allosterically inhibits the dengue NS2B-NS3 protease by disrupting the active and locking the inactive conformations. ACS Omega, 7(3), 2798–2808. https://doi.org/10.1021/acsomega.1c05569
  • DasNandy, A., Patil, V. S., Hegde, H. V., Harish, D. R., & Roy, S. (2022). Elucidating type 2 diabetes mellitus risk factor by promoting lipid metabolism with gymnemagenin: An in vitro and in silico approach. Frontiers in Pharmacology, 13, 1074342. https://doi.org/10.3389/fphar.2022.1074342
  • De La Cruz, L., Chen, W. N., Graham, B., & Otting, G. (2014). Binding mode of the activity-modulating C-terminal segment of NS2B to NS3 in the dengue virus NS2B-NS3 protease. The FEBS Journal, 281(6), 1517–1533. https://doi.org/10.1111/febs.12729
  • De La Cruz, L., Nguyen, T. H. D., Ozawa, K., Shin, J., Graham, B., Huber, T., & Otting, G. (2011). Binding of low molecular weight inhibitors promotes large conformational changes in the dengue virus ns2b-ns3 protease: Fold analysis by pseudocontact shifts. Journal of the American Chemical Society, 133(47), 19205–19215. https://doi.org/10.1021/ja208435s
  • De Sousa, L. R. F., Wu, H., Nebo, L., Fernandes, J. B., Da Silva, M. F. D. G. F., Kiefer, W., Kanitz, M., Bodem, J., Diederich, W. E., Schirmeister, T., & Vieira, P. C. (2015). Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorganic & Medicinal Chemistry, 23(3), 466–470. https://doi.org/10.1016/j.bmc.2014.12.015
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Ghildiyal, R., Prakash, V., Chaudhary, V. K., Gupta, V., & Gabrani, R. (2020). Phytochemicals as antiviral agents: Recent updates. In Plant-derived Bioactives: Production, Properties and Therapeutic Applications. (pp. 279–295). Springer Singapore. https://doi.org/10.1007/978-981-15-1761-7_12
  • Gibbs, A. C., Steele, R., Liu, G., Tounge, B. A., & Montelione, G. T. (2018). Inhibitor bound dengue NS2B-ns3pro reveals multiple dynamic binding modes. Biochemistry, 57(10), 1591–1602. https://doi.org/10.1021/acs.biochem.7b01127
  • Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score-a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157. https://doi.org/10.1039/C8MD00472B
  • Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., & Zhang, P. (2019). In silico ADME and toxicity prediction of ceftazidime and its impurities. Frontiers in Pharmacology, 10(APR), 434. https://doi.org/10.3389/fphar.2019.00434
  • Heh, C. H., Othman, R., Buckle, M. J. C., Sharifuddin, Y., Yusof, R., & Rahman, N. A. (2013). Rational discovery of dengue type 2 non-competitive inhibitors. Chemical Biology & Drug Design, 82(1), 1–11. https://doi.org/10.1111/cbdd.12122
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual Molecular Dynamics.
  • Hung, W. L., Chang, W. S., Lu, W. C., Wei, G. J., Wang, Y., Ho, C. T., & Hwang, L. S. (2018). Pharmacokinetics, bioavailability, tissue distribution and excretion of tangeretin in rat. Journal of Food and Drug Analysis, 26(2), 849–857. https://doi.org/10.1016/j.jfda.2017.08.003
  • Ibrahim, Z. Y., Uzairu, A., Shallangwa, G. A., & Abechi, S. E. (2021). Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH). Future Journal of Pharmaceutical Sciences, 7(1), 1–10. https://doi.org/10.1186/s43094-021-00288-2
  • Jayadevappa, M. K., Karkera, P. R., Siddappa, R. Y., Telkar, S., & Karunakara, P. (2020). Investigation of plant flavonoids as potential dengue protease inhibitors. Journal of Herbmed Pharmacology, 9(4), 366–373. https://doi.org/10.34172/jhp.2020.46
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
  • Kim, Y. M., Gayen, S., Kang, C. B., Joy, J., Huang, Q., Chen, A. S., Wee, J. L. K., Ang, M. J. Y., Lim, H. A., Hung, A. W., Li, R., Noble, C. G., Lee, L. T., Yip, A., Wang, Q. Y., Chia, C. S. B., Hill, J., Shi, P. Y., & Keller, T. H. (2013). NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. The Journal of Biological Chemistry, 288(18), 12891–12900. https://doi.org/10.1074/jbc.M112.442723
  • Lim, L., Dang, M., Roy, A., Kang, J., & Song, J. (2020). Curcumin allosterically inhibits the dengue NS2B-NS3 protease by disrupting its active conformation. ACS Omega, 5(40), 25677–25686. https://doi.org/10.1021/acsomega.0c00039
  • Liu, A. L., Wang, H. D., Lee, S. M. Y., Wang, Y. T., & Du, G. H. (2008). Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorganic & Medicinal Chemistry, 16(15), 7141–7147. https://doi.org/10.1016/j.bmc.2008.06.049
  • Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. X., & Cao, Y. (2022). CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50(W1), W159–W164. https://doi.org/10.1093/nar/gkac394
  • Millies, B., Von Hammerstein, F., Gellert, A., Hammerschmidt, S., Barthels, F., Göppel, U., Immerheiser, M., Elgner, F., Jung, N., Basic, M., Kersten, C., Kiefer, W., Bodem, J., Hildt, E., Windbergs, M., Hellmich, U. A., & Schirmeister, T. (2019). Proline-based allosteric inhibitors of zika and dengue virus NS2B/NS3 proteases. Journal of Medicinal Chemistry, 62(24), 11359–11382. https://doi.org/10.1021/acs.jmedchem.9b01697
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Murugesan, A., & Manoharan, M. (2019). Dengue virus. In Emerging and reemerging viral pathogens: Volume 1: Fundamental and basic virology aspects of human, animal and plant pathogens (pp. 281–359). Elsevier. https://doi.org/10.1016/B978-0-12-819400-3.00016-8
  • Noble, C. G., Seh, C. C., Chao, A. T., & Shi, P. Y. (2012). Ligand-bound structures of the dengue virus protease reveal the active conformation. Journal of Virology, 86(1), 438–446. https://doi.org/10.1128/jvi.06225-11
  • Norazharuddin, H., & Lai, N. S. (2018). Roles and prospects of dengue virus nonstructural proteins as antiviral targets: An easy digest. The Malaysian Journal of Medical Sciences: MJMS, 25(5), 6–15. https://doi.org/10.21315/mjms2018.25.5.2
  • Othman, R., Kiat, T. S., Khalid, N., Yusof, R., Newhouse, E. I., Newhouse, J. S., Alam, M., & Rahman, N. A. (2008). Docking of noncompetitive inhibitors into dengue virus type 2 protease: Understanding the interactions with allosteric binding sites. Journal of Chemical Information and Modeling, 48(8), 1582–1591. https://doi.org/10.1021/ci700388k
  • Peng, M., Watanabe, S., Chan, K. W. K., He, Q., Zhao, Y., Zhang, Z., Lai, X., Luo, D., Vasudevan, S. G., & Li, G. (2017). Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Research, 143, 176–185. https://doi.org/10.1016/j.antiviral.2017.03.026
  • Salaemae, W., Junaid, M., Angsuthanasombat, C., & Katzenmeier, G. (2010). Structure-guided mutagenesis of active site residues in the dengue virus two-component protease NS2B-NS3. Journal of Biomedical Science, 17(1), 68. https://doi.org/10.1186/1423-0127-17-68
  • Saqallah, F. G., Abbas, M. A., & Wahab, H. A. (2022). Recent advances in natural products as potential inhibitors of dengue virus with a special emphasis on NS2b/NS3 protease. Phytochemistry, 202, 113362. https://doi.org/10.1016/j.phytochem.2022.113362
  • Schrodinger LLC. (2015). The PyMOL molecular graphics system, version 1.8.
  • Senthilvel, P., Lavanya, P., Murugan Kumar, K., Swetha, R., Anitha, P., Bag, S., Sarveswari, S., Vijayakumar, V., Ramaiah, S., & Anbarasu, A. (2013). Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly. Bioinformation, 9(18), 889–895. https://doi.org/10.6026/97320630009889
  • Smith, D. A., Beaumont, K., Maurer, T. S., & Di, L. (2015). Volume of distribution in drug design. Journal of Medicinal Chemistry, 58(15), 5691–5698. https://doi.org/10.1021/acs.jmedchem.5b00201
  • Thilakarathna, S. H., & Vasantha Rupasinghe, H. P. (2013). Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 5(9), 3367–3387. https://doi.org/10.3390/nu5093367
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Wang, W. H., Urbina, A. N., Chang, M. R., Assavalapsakul, W., Lu, P. L., Chen, Y. H., & Wang, S. F. (2020). Dengue hemorrhagic fever – A systemic literature review of current perspectives on pathogenesis, prevention and control. Journal of Microbiology, Immunology and Infection, 53(6), 963–978. https://doi.org/10.1016/j.jmii.2020.03.007
  • Wen, X., & Walle, T. (2006). Methylation protects dietary flavonoids from rapid hepatic metabolism. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 36(5), 387–397. https://doi.org/10.1080/00498250600630636
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yildiz, M., Ghosh, S., Bell, J. A., Sherman, W., & Hardy, J. A. (2013). Allosteric inhibition of the NS2B-NS3 protease from dengue virus. ACS Chemical Biology, 8(12), 2744–2752. https://doi.org/10.1021/cb400612h
  • Yin, Z., Ramshani, Z., Waggoner, J. J., Pinsky, B. A., Senapati, S., & Chang, H. C. (2020). A non-optical multiplexed PCR diagnostic platform for serotype-specific detection of dengue virus. Sensors and Actuators B: Chemical, 310, 127854. https://doi.org/10.1016/j.snb.2020.127854
  • Zakaria, I. I., Salin, N. H., Amanah, A., Othman, S., Khairuddin, F., Khawory, M. H., Wahab, R. A., Rahaman, M. R. A., Chern, P. P., Johari, N. A., & Wahab, H. (2019). Potential anti-viral compounds from Malaysian Plant Natural Product Repository and Database (MyNature50000) for DENV2. Biotechnology & Biotechnological Equipment, 33(1), 379–389. https://doi.org/10.1080/13102818.2019.1578184
  • Zandi, K., Teoh, B. T., Sam, S. S., Wong, P. F., Mustafa, M., & Abubakar, S. (2011). Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virology Journal, 8(1), 560. https://doi.org/10.1186/1743-422X-8-560

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.