123
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Predictive insights into plant-based compounds as fibroblast growth factor receptor 1 inhibitors: a combined molecular docking and dynamics simulation study

, , , , & ORCID Icon
Received 25 Sep 2023, Accepted 20 Mar 2024, Published online: 26 Apr 2024

References

  • Amir, M., Mohammad, T., Prasad, K., Hasan, G. M., Kumar, V., Dohare, R., Islam, A., Ahmad, F., & Imtaiyaz Hassan, M. (2020). Virtual high-throughput screening of natural compounds in-search of potential inhibitors for protection of telomeres 1 (POT1). Jour of Biomolecular Structure & Dynamics, 38(15), 4625–4634. https://doi.org/10.1080/07391102.2019.1682052
  • Andricopulo, A. D., Guido, R. V., & Oliva, G. (2008). Virtual screening and its integration with modern drug design technologies. Current Medicinal Chemistry, 15(1), 37–46. https://doi.org/10.2174/092986708783330683
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T, (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews. Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
  • Atilgan, C., Gerek, Z., Ozkan, S., & Atilgan, A. (2010). Manipulation of conformational change in proteins by single-residue perturbations. Biophysical Journal, 99(3), 933–943. https://doi.org/10.1016/j.bpj.2010.05.020
  • Berdigaliyev, N., & Aljofan, M. (2020). An overview of drug discovery and development. Future Medicinal Chemistry, 12(10), 939–947. https://doi.org/10.4155/fmc-2019-0307
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Biovia, D. S. (2017). Discovery studio visualizer. Dassault Syst mes, 936.
  • Bishayee, A., & Sethi, G. (2016). Bioactive natural products in cancer prevention and therapy: Progress and promise. Seminars in Cancer Biology, 40–41, 1–3. https://doi.org/10.1016/j.semcancer.2016.08.006
  • Bogatyrova, O., Mattsson, J. S. M., Ross, E. M., Sanderson, M. P., Backman, M., Botling, J., Brunnström, H., Kurppa, P., La Fleur, L., Strell, C., Wilm, C., Zimmermann, A., Esdar, C., & Micke, P. (2021). FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response. European Journal of Cancer, 151, 136–149. https://doi.org/10.1016/j.ejca.2021.04.005
  • Chen, K., Fan, Y., Gu, J., Han, Z., Zeng, H., Mao, C., & Wang, C. (2020). In vivo screening of natural products against angiogenesis and mechanisms of anti-angiogenic activity of deoxysappanone B 7, 4′-Dimethyl Ether. Drug Design, Development and Therapy, 14, 3069–3078. https://doi.org/10.2147/DDDT.S252681
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Protein Dynamics: Methods and Protocols, 1084, 193–226. https://doi.org/10.1007/978-1-62703-658-0_11.
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 40(1), 82–92.
  • Ferreira, L. L., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Golfmann, K., Meder, L., Koker, M., Volz, C., Borchmann, S., Tharun, L., Dietlein, F., Malchers, F., Florin, A., Büttner, R., Rosen, N., Rodrik-Outmezguine, V., Hallek, M., & Ullrich, R. T. (2018). Synergistic anti-angiogenic treatment effects by dual FGFR1 and VEGFR1 inhibition in FGFR1-amplified breast cancer. Oncogene, 37(42), 5682–5693. https://doi.org/10.1038/s41388-018-0380-3
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Lionta, E., Spyrou, G., K Vassilatis, D., & Cournia, Z. (2014). Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Current Topics in Medicinal Chemistry, 14(16), 1923–1938. https://doi.org/10.2174/1568026614666140929124445
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2009). Principal component analysis for protein folding dynamics. Journal of Molecular Biology, 385(1), 312–329. https://doi.org/10.1016/j.jmb.2008.10.018
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. https://doi.org/10.1021/ct200196m
  • Marsh, J. A., & Teichmann, S. A. (2011). Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure, 19(6), 859–867. https://doi.org/10.1016/j.str.2011.03.010
  • Matsuki, M., Hoshi, T., Yamamoto, Y., Ikemori‐Kawada, M., Minoshima, Y., Funahashi, Y., & Matsui, J. (2018). Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Medicine, 7(6), 2641–2653. https://doi.org/10.1002/cam4.1517
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Mohammad, T., Mathur, Y., & Hassan, M. I. (2021). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Briefings in Bioinformatics, 22(4), bbaa279. https://doi.org/10.1093/bib/bbaa279
  • Naqvi, A. A., Mohammad, T., Hasan, G. M., & Hassan, M. I. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768. https://doi.org/10.2174/1568026618666181025114157
  • Nguyen, P., Tsunematsu, T., Yanagisawa, S., Kudo, Y., Miyauchi, M., Kamata, N., & Takata, T. (2013). The FGFR1 inhibitor PD173074 induces mesenchymal–epithelial transition through the transcription factor AP-1. British Journal of Cancer, 109(8), 2248–2258. https://doi.org/10.1038/bjc.2013.550
  • Pace, C. N., Fu, H., Lee Fryar, K., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science: A Publication of the Protein Society, 23(5), 652–661. https://doi.org/10.1002/pro.2449
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Reis-Filho, J. S., Simpson, P. T., Turner, N. C., Lambros, M. B., Jones, C., Mackay, A., Grigoriadis, A., Sarrio, D., Savage, K., Dexter, T., Iravani, M., Fenwick, K., Weber, B., Hardisson, D., Schmitt, F. C., Palacios, J., Lakhani, S. R., & Ashworth, A. (2006). FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(22), 6652–6662. https://doi.org/10.1158/1078-0432.CCR-06-1164
  • Salsbury, F. R. Jr. (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current Opinion in Pharmacology, 10(6), 738–744. https://doi.org/10.1016/j.coph.2010.09.016
  • Shukla, R., & Tripathi, T. (2020). Molecular dynamics simulation of protein and protein-ligand complexes. In D. B. Singh (Ed.), Computer-aided Drug Design (pp. 133–161). Singapore: Springer. https://doi.org/10.1007/978-981-15-6815-2_7
  • Siricilla, S., Hansen, C. J., Rogers, J. H., De, D., Simpson, C. L., Waterson, A. G., Sulikowski, G. A., Crockett, S. L., Boatwright, N., Reese, J., Paria, B. C., Newton, J., & Herington, J. L. (2023). Arrest of mouse preterm labor until term delivery by combination therapy with atosiban and mundulone, a natural product with tocolytic efficacy. Pharmacological Research, 195, 106876. https://doi.org/10.1016/j.phrs.2023.106876
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turner, N., Pearson, A., Sharpe, R., Lambros, M., Geyer, F., Lopez-Garcia, M. A., Natrajan, R., Marchio, C., Iorns, E., Mackay, A., Gillett, C., Grigoriadis, A., Tutt, A., Reis-Filho, J. S., & Ashworth, A. (2010). FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Research, 70(5), 2085–2094. https://doi.org/10.1158/0008-5472.CAN-09-3746
  • Turner, P. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research. Oregon Graduate Institute of Science and Technology. 2.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vivek-Ananth, R., Mohanraj, K., Sahoo, A. K., & Samal, A. (2023). IMPPAT 2.0: An enhanced and expanded phytochemical atlas of Indian medicinal plants. ACS Omega, 8(9), 8827–8845. https://doi.org/10.1021/acsomega.3c00156
  • Weiss, J., Sos, M. L., Seidel, D., Peifer, M., Zander, T., Heuckmann, J. M., Ullrich, R. T., Menon, R., Maier, S., Soltermann, A., Moch, H., Wagener, P., Fischer, F., Heynck, S., Koker, M., Schöttle, J., Leenders, F., Gabler, F., Dabow, I., … Thomas, R. K. (2010). Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Science Translational Medicine, 2(62), 62ra93. https://doi.org/10.1126/scitranslmed.3001451
  • Wu, Y., Tepper, H. L., & Voth, G. A. (2006). Flexible simple point-charge water model with improved liquid-state properties. The Journal of Chemical Physics, 124(2), 024503. https://doi.org/10.1063/1.2136877
  • Yang, F., Zhang, Y., Ressler, S. J., Ittmann, M. M., Ayala, G. E., Dang, T. D., Wang, F., & Rowley, D. R. (2013). FGFR1 is essential for prostate cancer progression and metastasis. Cancer Research, 73(12), 3716–3724. https://doi.org/10.1158/0008-5472.CAN-12-3274
  • Yu, T., Yang, Y., Liu, Y., Zhang, Y., Xu, H., Li, M., Ponnusamy, M., Wang, K., Wang, J.-X., & Li, P.-F. (2017). A FGFR1 inhibitor patent review: Progress since 2010. Expert Opinion on Therapeutic Patents, 27(4), 439–454. https://doi.org/10.1080/13543776.2017.1272574

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.