130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Redesigning the kinetics of lysozyme amyloid aggregation by cephalosporin molecules

, , , , , & show all
Received 03 Dec 2023, Accepted 20 Mar 2024, Published online: 29 Apr 2024

References

  • Ahmad, B., Winkelmann, J., Tiribilli, B., & Chiti, F. (2010). Searching for conditions to form stable protein oligomers with amyloid-like characteristics : The unexplored basic pH. BBA. Biochimica et Biophysica Acta, 1804(1), 223–234. https://doi.org/10.1016/j.bbapap.2009.10.005
  • Al Adem, K., Lukman, S., Kim, T.-Y., & Lee, S. (2020). Inhibition of lysozyme aggregation and cellular toxicity by organic acids at acidic and physiological pH conditions. International Journal of Biological Macromolecules, 149, 921–930. https://doi.org/10.1016/j.ijbiomac.2020.01.267
  • Alsalahat, I., Al-Majdoub, Z. M., Taha, M. O., Barber, J., Aojula, H., Hodson, N., & Freeman, S. (2021). Inhibition of aggregation of amyloid-β through covalent modification with benzylpenicillin; potential relevance to Alzheimer’s disease. Biochemistry and Biophysics Reports, 26, 100943. https://doi.org/10.1016/j.bbrep.2021.100943
  • Amakhin, D. V., Soboleva, E. B., & Zaitsev, A. V. (2018). Cephalosporin antibiotics are weak blockers of GABAa receptor-mediated synaptic transmission in rat brain slices. Biochemical and Biophysical Research Communications, 499(4), 868–874. https://doi.org/10.1016/j.bbrc.2018.04.008
  • Arnaudov, L. N., & De Vries, R. (2005). Thermally induced fibrillar aggregation of hen egg white lysozyme. Biophysical Journal, 88(1), 515–526. https://doi.org/10.1529/biophysj.104.048819
  • Artymiuk, P. J., & Blake, C. C. F. (1981). Refinement of human lysozyme at 1.5 Å resolution analysis of non-bonded and hydrogen-bond interactions. Journal of Molecular Biology, 152(4), 737–762. https://doi.org/10.1016/0022-2836(81)90125-X
  • Arya, S., Kumari, A., Dalal, V., Bhattacharya, M., & Mukhopadhyay, S. (2015). Appearance of annular ring-like intermediates during amyloid fibril formation from human serum albumin. Physical Chemistry Chemical Physics: PCCP, 17(35), 22862–22871. https://doi.org/10.1039/c5cp03782d
  • Balducci, C., & Forloni, G. (2019). Doxycycline for Alzheimer’s disease: Fighting β-amyloid oligomers and neuroinflammation. Frontiers in Pharmacology, 10(July), 738. https://doi.org/10.3389/fphar.2019.00738
  • Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C., & Sarma, V. R. (1965). Structure of Hen Egg-White lysozyme: A three-dimensional fourier synthesis at 2 Å resolution. Nature, 206(4986), 757–761. https://doi.org/10.1038/206757a0
  • Borana, M. S., Mishra, P., Pissurlenkar, R. R. S., Hosur, R. V., & Ahmad, B. (2014). Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters. Biochimica et Biophysica Acta, 1844(3), 670–680. https://doi.org/10.1016/j.bbapap.2014.01.009
  • Bortolanza, M., Nascimento, G. C., Socias, S. B., Ploper, D., Chehín, R. N., Raisman-Vozari, R., & Del-Bel, E. (2018). Tetracycline repurposing in neurodegeneration: Focus on Parkinson’s disease. Journal of Neural Transmission (Vienna, Austria: 1996), 125(10), 1403–1415. https://doi.org/10.1007/s00702-018-1913-1
  • Cardoso, I., Merlini, G., & Saraiva, M. J. (2003). 4’-iodo-4’-Deoxydoxorubicin and tetracyclines disrupt transthyretin amyloid fibrils in vitro producing noncytotoxic species: Screening for TTR fibril disrupters. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 17(8), 803–809. https://doi.org/10.1096/fj.02-0764com
  • Chaudhary, A. P., Vispute, N. H., Shukla, V. K., & Ahmad, B. (2017). A comparative study of fibrillation kinetics of two homologous proteins under identical solution condition. Biochimie, 132, 75–84. https://doi.org/10.1016/j.biochi.2016.11.002
  • Chen, Y., Liu, Q., Yang, F., Yu, H., Xie, Y., & Yao, W. (2022). Lysozyme amyloid fibril: Regulation, application, hazard analysis, and future perspectives. International Journal of Biological Macromolecules, 200, 151–161. https://doi.org/10.1016/j.ijbiomac.2021.12.163
  • Chiti, F., & Dobson, C. M. (2017). Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annual Review of Biochemistry, 86(1), 27–68. https://doi.org/10.1146/annurev-biochem-061516-045115
  • Chopade, P., Chopade, N., Zhao, Z., Mitragotri, S., Liao, R., & Chandran Suja, V. (2023). Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioengineering & Translational Medicine, 8(1), e10367. https://doi.org/10.1002/btm2.10367
  • Chowdhury, S., & Kumar, S. (2021). Bioactive phytocompounds: Anti-amyloidogenic effects against hen egg-white lysozyme aggregation. The Protein Journal, 40(1), 78–86. https://doi.org/10.1007/s10930-020-09946-5
  • Cummings, J. L., Goldman, D. P., Simmons-Stern, N. R., & Ponton, E. (2022). The costs of developing treatments for Alzheimer’s disease: A retrospective exploration. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 18(3), 469–477. https://doi.org/10.1002/alz.12450
  • Cummings, J., Rabinovici, G. D., Atri, A., Aisen, P., Apostolova, L. G., Hendrix, S., Sabbagh, M., Selkoe, D., Weiner, M., & Salloway, S. (2022). Aducanumab: Appropriate Use Recommendations Update. Journal of Prevention of Alzheimer’s Disease, 9(2), 221–230. https://doi.org/10.14283/jpad.2022.34
  • Durães, F., Pinto, M., & Sousa, E. (2018). Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel, Switzerland), 11(2), 44. https://doi.org/10.3390/ph11020044
  • Eftink, M. R. (1994). The use of fluorescence methods to monitor unfolding transitions in proteins. Biophysical Journal, 66(2 Pt 1), 482–501. https://doi.org/10.1016/S0006-3495(94)80799-4
  • Eftink, M. R., & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analytical Biochemistry, 114(2), 199–227. https://doi.org/10.1016/0003-2697(81)90474-7
  • Emadi, S., & Behzadi, M. (2014). A comparative study on the aggregating effects of guanidine thiocyanate, guanidine hydrochloride and urea on lysozyme aggregation. Biochemical and Biophysical Research Communications, 450(4), 1339–1344. https://doi.org/10.1016/j.bbrc.2014.06.133
  • Faramarzian, M., Bahramikia, S., & Dehghan Shasaltaneh, M. (2020). In vitro investigation of the effect of mesalazine on amyloid fibril formation of hen egg-white lysozyme and defibrillation lysozyme fibrils. European Journal of Pharmacology, 874, 173011. https://doi.org/10.1016/j.ejphar.2020.173011
  • Forloni, G., Colombo, L., Girola, L., Tagliavini, F., & Salmona, M. (2001). Anti-amyloidogenic activity of tetracyclines: Studies in vitro. FEBS Letters, 487(3), 404–407. https://doi.org/10.1016/s0014-5793(00)02380-2
  • Frare, E., Mossuto, M. F., Laureto, P. P., De Tolin, S., Menzer, L., Dumoulin, M., Dobson, C. M., & Fontana, A. (2009). Characterization of oligomeric species on the aggregation pathway of human lysozyme. Journal of Molecular Biology, 387(1), 17–27. https://doi.org/10.1016/j.jmb.2009.01.049
  • Frare, E., Polverino De Laureto, P., Zurdo, J., Dobson, C. M., & Fontana, A. (2004). A highly amyloidogenic region of hen lysozyme. Journal of Molecular Biology, 340(5), 1153–1165. https://doi.org/10.1016/j.jmb.2004.05.056
  • Frieg, B., Gremer, L., Heise, H., Willbold, D., & Gohlke, H. (2020). Binding modes of thioflavin T and Congo red to the fibril structure of amyloid-β(1-42). Chemical Communications (Cambridge, England), 56(55), 7589–7592. https://doi.org/10.1039/d0cc01161d
  • Ghosh, R., Raveendranath, R., & Kishore, N. (2021). Unraveling diverse action of triton X-100 and methimazole on lysozyme fibrillation/aggregation: Physicochemical insights. International Journal of Biological Macromolecules, 167, 736–745. https://doi.org/10.1016/j.ijbiomac.2020.11.210
  • Giorgetti, S., Raimondi, S., Pagano, K., Relini, A., Bucciantini, M., Corazza, A., Fogolari, F., Codutti, L., Salmona, M., Mangione, P., Colombo, L., Luigi, A., De Porcari, R., Gliozzi, A., Stefani, M., Esposito, G., Bellotti, V., & Stoppini, M. (2011). Effect of tetracyclines on the dynamics of formation and destructuration of beta2-microglobulin amyloid fibrils. The Journal of Biological Chemistry, 286(3), 2121–2131. https://doi.org/10.1074/jbc.M110.178376
  • González-Lizárraga, F., Socías, S. B., Ávila, C. L., Torres-Bugeau, C. M., Barbosa, L. R. S., Binolfi, A., Sepúlveda-Díaz, J. E., Del-Bel, E., Fernandez, C. O., Papy-Garcia, D., Itri, R., Raisman-Vozari, R., & Chehín, R. N. (2017). Repurposing doxycycline for synucleinopathies: Remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Scientific Reports, 7(1), 41755. https://doi.org/10.1038/srep41755
  • Gregoire, S., Irwin, J., & Kwon, I. (2012). Techniques for monitoring protein misfolding and aggregation in vitro and in living cells. The Korean Journal of Chemical Engineering, 29(6), 693–702. https://doi.org/10.1007/s11814-012-0060-x
  • Guliyeva, A. J., & Gasymov, O. K. (2020). ANS fluorescence: Potential to discriminate hydrophobic sites of proteins in solid states. Biochemistry and Biophysics Reports, 24, 100843. https://doi.org/10.1016/j.bbrep.2020.100843
  • Huerta-Viga, A., & Woutersen, S. (2013). Protein denaturation with guanidinium: A 2D-IR study. The Journal of Physical Chemistry Letters, 4(20), 3397–3401. https://doi.org/10.1021/jz401754b
  • Jin, L., Gao, W., Liu, C., Zhang, N., Mukherjee, S., Zhang, R., Dong, H., Bhunia, A., Bednarikova, Z., Gazova, Z., Liu, M., Han, J., & Siebert, H.-C. (2020). Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme. International Journal of Biological Macromolecules, 161, 1393–1404. https://doi.org/10.1016/j.ijbiomac.2020.07.296
  • Jin, L., Liu, C., Zhang, N., Zhang, R., Yan, M., Bhunia, A., Zhang, Q., Liu, M., Han, J., & Siebert, H.-C. (2021). Attenuation of Human Lysozyme Amyloid Fibrillation by ACE Inhibitor Captopril: A Combined Spectroscopy, Microscopy, Cytotoxicity, and Docking Study. Biomacromolecules, 22(5), 1910–1920. https://doi.org/10.1021/acs.biomac.0c01802
  • Khan, A. N., Qureshi, I. A., Khan, U. K., Uversky, V. N., & Khan, R. H. (2021). Inhibition and disruption of amyloid formation by the antibiotic levofloxacin: A new direction for antibiotics in an era of multi-drug resistance. Archives of Biochemistry and Biophysics, 714, 109077. https://doi.org/10.1016/j.abb.2021.109077
  • Klein, N. C., & Cunha, B. A. (1995). Third-generation cephalosporins. The Medical Clinics of North America, 79(4), 705–719. https://doi.org/10.1016/S0025-7125(16)30034-7
  • Kumari, A., Muthu, S. A., Prakash, P., & Ahmad, B. (2020). Herbalome of Chandraprabha vati, a polyherbal formulation of Ayurveda prevents fibrillation of lysozyme by stabilizing aggregation-prone intermediate state. International Journal of Biological Macromolecules, 148, 102–109. https://doi.org/10.1016/j.ijbiomac.2020.01.121
  • Kumari, A., Sharma, R., Shrivastava, N., Somvanshi, P., & Grover, A. (2020). Bleomycin modulates amyloid aggregation in β-amyloid and hIAPP. RSC Advances, 10(43), 25929–25946. https://doi.org/10.1039/D0RA04949B
  • Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy Principles of Fluorescence Spectroscopy. In Principles of fluorescence spectroscopy. 3rd ed. Springer. https://doi.org/10.1007/978-0-387-46312-4
  • Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 12(21), 4161–4170. https://doi.org/10.1021/bi00745a020
  • Ling, J., Cho, C., Guo, L. T., Aerni, H. R., Rinehart, J., & Söll, D. (2012). Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger. Molecular Cell, 48(5), 713–722. https://doi.org/10.1016/j.molcel.2012.10.001
  • Liu, Y., Graetz, M., Ho, L., & Pukala, T. L. (2015). Ion mobility-mass spectrometry-based screening for inhibition of α-synuclein aggregation. European Journal of Mass Spectrometry (Chichester, England), 21(3), 255–264. https://doi.org/10.1255/ejms.1359
  • Ma, B., Wang, H., Liu, Y., Wu, F., & Zhu, X. (2021). The inhibitory role of clioquinol in the fibrillation of hen egg white lysozyme. Chemical Physics Letters, 779, 138830. https://doi.org/10.1016/j.cplett.2021.138830
  • Ma, L., Yang, C., Zheng, J., Chen, Y., Xiao, Y., & Huang, K. (2020). Non-polyphenolic natural inhibitors of amyloid aggregation. European Journal of Medicinal Chemistry, 192, 112197. https://doi.org/10.1016/j.ejmech.2020.112197
  • Mckhann, G. (2005). Beta-lactam antibiotics offer neuroprotection. Neurosurgery, 56(5), 73–77.
  • Meng, F., Marek, P., Potter, K. J., Verchere, C. B., & Raleigh, D. P. (2008). Rifampicin does not prevent amyloid fibril formation by human islet amyloid polypeptide but does inhibit fibril thioflavin-T interactions: Implications for mechanistic studies of beta-cell death. Biochemistry, 47(22), 6016–6024. https://doi.org/10.1021/bi702518m
  • Merlini, G., & Bellotti, V. (2005). Lysozyme: A paradigmatic molecule for the investigation of protein structure, function and misfolding. Clinica Chimica Acta; International Journal of Clinical Chemistry, 357(2), 168–172. https://doi.org/10.1016/j.cccn.2005.03.022
  • Michaels, T. C. T., Weber, C. A., & Mahadevan, L. (2019). Optimal control strategies for inhibition of protein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 116(29), 14593–14598. https://doi.org/10.1073/pnas.1904090116
  • Mirza, H. C. (2022). Investigation of anti-Cholinesterase and anti-Amyloidogenic Activities of β -Lactam Antibiotics β -Laktam Antibiyotiklerin. Antikolinesteraz ve Antiamiloidojenik Aktivitelerinin Incelenmesi, 47(3), 361–371.
  • Muchtar, E., Dispenzieri, A., Magen, H., Grogan, M., Mauermann, M., McPhail, E. D., Kurtin, P. J., Leung, N., Buadi, F. K., Dingli, D., Kumar, S. K., & Gertz, M. A. (2021). Systemic amyloidosis from A (AA) to T (ATTR): A review. Journal of Internal Medicine, 289(3), 268–292. https://doi.org/10.1111/joim.13169
  • Muchtar, E., & Gertz, M. A. (2017). Clinical trials evaluating potential therapies for light chain (AL) amyloidosis. Expert Opinion on Orphan Drugs, 5(8), 655–663. https://doi.org/10.1080/21678707.2017.1341834
  • Murakami, H., Shiraishi, T., Umehara, T., Omoto, S., & Iguchi, Y. (2023). Recent Advances in Drug Therapy for Parkinson’s Disease. Internal Medicine (Tokyo, Japan), 62(1), 33–42. https://doi.org/10.2169/internalmedicine.8940-21
  • Muthu, S. A., Jadav, H. C., Srivastava, S., Pissurlenkar, R. R. S., & Ahmad, B. (2020). The reorganization of conformations, stability and aggregation of serum albumin isomers through the interaction of glycopeptide antibiotic teicoplanin: A thermodynamic and spectroscopy study. International Journal of Biological Macromolecules, 163, 66–78. https://doi.org/10.1016/j.ijbiomac.2020.06.258
  • Muthu, S. A., Mothi, N., Shiriskar, S. M., Pissurlenkar, R. R. S., Kumar, A., & Ahmad, B. (2016). Physical basis for the ofloxacin-induced acceleration of lysozyme aggregation and polymorphism in amyloid fibrils. Archives of Biochemistry and Biophysics, 592, 10–19. https://doi.org/10.1016/j.abb.2016.01.005
  • Muthu, S. A., Sharma, R., Qureshi, A., Parvez, S., & Ahmad, B. (2023). Mechanistic insights into monomer level prevention of amyloid aggregation of lysozyme by glycyrrhizic acid. International Journal of Biological Macromolecules, 227(October 2022), 884–895. https://doi.org/10.1016/j.ijbiomac.2022.12.166
  • Pagano, K., Tomaselli, S., Molinari, H., & Ragona, L. (2020). Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Frontiers in Neuroscience, 14(December), 619667. https://doi.org/10.3389/fnins.2020.619667
  • Perneczky, R., Jessen, F., Grimmer, T., Levin, J., Flöel, A., Peters, O., & Froelich, L. (2023). Anti-amyloid antibody therapies in Alzheimer’s disease. Brain: A Journal of Neurology, 146(3), 842–849. https://doi.org/10.1093/brain/awad005
  • Pramanik, S., & Ahmad, B. (2018). Exposure of aggregation-prone segments is the requirement for amyloid fibril formation. Current Protein & Peptide Science, 19(10), 1024–1035. https://doi.org/10.2174/1389203719666180521091647
  • Rajan, R., Ahmed, S., Sharma, N., Kumar, N., Debas, A., & Matsumura, K. (2021). Review of the current state of protein aggregation inhibition from a materials chemistry perspective: Special focus on polymeric materials. Materials Advances, 2(4), 1139–1176. https://doi.org/10.1039/D0MA00760A
  • Ratnaparkhi, A., Muthu, S. A., Shiriskar, S. M., Pissurlenkar, R. R. S., Choudhary, S., & Ahmad, B. (2015). Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: Multispectroscopic and molecular dynamic simulation studies? Journal of Biomolecular Structure & Dynamics, 33(9), 1866–1879. https://doi.org/10.1080/07391102.2014.975746
  • Reglodi, D., Renaud, J., Tamas, A., Tizabi, Y., Socías, S. B., Del-Bel, E., & Raisman-Vozari, R. (2017). Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides. Progress in Neurobiology, 155, 120–148. https://doi.org/10.1016/j.pneurobio.2015.10.004
  • Rothstein, J. D., Patel, S., Regan, M. R., Haenggeli, C., Huang, Y. H., Bergles, D. E., Jin, L., Dykes Hoberg, M., Vidensky, S., Chung, D. S., Toan, S. V., Bruijn, L. I., Su, Z., Gupta, P., & Fisher, P. B. (2005). [ beta]-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 433(7021), 73–77. +. https://doi.org/10.1038/nature03180
  • Saunders, J. C., Young, L. M., Mahood, R. A., Jackson, M. P., Revill, C. H., Foster, R. J., Smith, D. A., Ashcroft, A. E., Brockwell, D. J., & Radford, S. E. (2016). An in vivo platform for identifying inhibitors of protein aggregation. Nature Chemical Biology, 12(2), 94–101. https://doi.org/10.1038/nchembio.1988
  • Scheidt, T., Łapińska, U., Kumita, J. R., Whiten, D. R., Klenerman, D., Wilson, M. R., Cohen, S. I. A., Linse, S., Vendruscolo, M., Dobson, C. M., Knowles, T. P. J., & Arosio, P. (2019). Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Science Advances, 5(4), eaau3112. https://doi.org/10.1126/sciadv.aau3112
  • Shi, J., Sabbagh, M. N., & Vellas, B. (2020). Alzheimer’s disease beyond amyloid: Strategies for future therapeutic interventions. BMJ (Clinical Research ed.), 371, m3684. https://doi.org/10.1136/bmj.m3684
  • Socias, S. B., González-Lizárraga, F., Avila, C. L., Vera, C., Acuña, L., Sepulveda-Diaz, J. E., Del-Bel, E., Raisman-Vozari, R., & Chehin, R. N. (2018). Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Progress in Neurobiology, 162, 17–36. https://doi.org/10.1016/j.pneurobio.2017.12.002
  • Swaminathan, R., Ravi, V. K., Kumar, S., Kumar, M. V. S., & Chandra, N. (2011). Lysozyme: A model protein for amyloid research. In Advances in Protein Chemistry and Structural Biology, 84, 63–111.). https://doi.org/10.1016/B978-0-12-386483-3.00003-3
  • Takahashi, D., Nishimoto, E., Murase, T., & Yamashita, S. (2008). Protein-Protein Interaction on Lysozyme Crystallization Revealed by Rotational Diffusion Analysis. Biophysical Journal, 94(11), 4484–4492. https://doi.org/10.1529/biophysj.107.111872
  • Theodorakakou, F., Fotiou, D., Dimopoulos, M. A., & Kastritis, E. (2022). Future developments in the treatment of AL amyloidosis. Hemato, 3(1), 131–152. https://doi.org/10.3390/hemato3010012
  • Trexler, A., & Nilsson, M. (2007). The formation of amyloid fibrils from proteins in the lysozyme family. Current Protein & Peptide Science, 8(6), 537–557. https://doi.org/10.2174/138920307783018659
  • Vernaglia, B. A., Huang, J., & Clark, E. D. (2004). Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Biomacromolecules, 5(4), 1362–1370. https://doi.org/10.1021/bm0498979
  • Vieira, M. N. N., Figueroa-Villar, J. D., Meirelles, M. N. L., Ferreira, S. T., & De Felice, F. G. (2006). Small molecule inhibitors of lysozyme amyloid aggregation. Cell Biochemistry and Biophysics, 44(3), 549–553. https://doi.org/10.1385/CBB:44:3:549
  • Voropai, E. S., Samtsov, M. P., Kaplevskii, K. N., Maskevich, A. A., Stepuro, V. I., Povarova, O. I., Kuznetsova, I. M., Turoverov, K. K., Fink, A. L., & Uverskii, V. N. (2003). Spectral properties of thioflavin T and its complexes with amyloid fibrils. Journal of Applied Spectroscopy, 70(6), 868–874. https://doi.org/10.1023/B:JAPS.0000016303.37573.7e
  • Ward, J. E., Ren, R., Toraldo, G., Soohoo, P., Guan, J., O'Hara, C., Jasuja, R., Trinkaus-Randall, V., Liao, R., Connors, L. H., & Seldin, D. C. (2011). Doxycycline reduces fibril formation in a transgenic mouse model of AL amyloidosis. Blood, 118(25), 6610–6617. https://doi.org/10.1182/blood-2011-04-351643
  • Xu, M., Shashilov, V. A., Ermolenkov, V. V., Fredriksen, L., Zagorevski, D., & Lednev, I. K. (2007). The first step of hen egg white lysozyme fibrillation, irreversible partial unfolding, is a two-state transition. Protein Science: a Publication of the Protein Society, 16(5), 815–832. https://doi.org/10.1110/ps.062639307
  • Xue, C., Lin, T. Y., Chang, D., & Guo, Z. (2017). Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science, 4(1), 160696. https://doi.org/10.1098/rsos.160696
  • Yakupova, E. I., Bobyleva, L. G., Vikhlyantsev, I. M., & Bobylev, A. G. (2019). Congo Red and amyloids: History and relationship. Bioscience Reports, 39(1), BSR20181415. https://doi.org/10.1042/BSR20181415
  • Yokoyama, K., Fisher, A. D., Amori, A. R., Welchons, D. R., & McKnight, R. E. (2010). Spectroscopic and calorimetric studies of congo red dye-amyloid peptide complexes. Journal of Biophysical Chemistry, 01(03), 153–163. https://doi.org/10.4236/jbpc.2010.13018
  • Zaidi, F. K., & Bhat, R. (2022). Two polyphenols with diverse mechanisms towards amyloidosis: Differential modulation of the fibrillation pathway of human lysozyme by curcumin and EGCG. Journal of Biomolecular Structure & Dynamics, 40(10), 4593–4611. https://doi.org/10.1080/07391102.2020.1860824
  • Zareifopoulos, N., & Panayiotakopoulos, G. (2017). Neuropsychiatric effects of antimicrobial agents. Clinical Drug Investigation, 37(5), 423–437. https://doi.org/10.1007/s40261-017-0498-z
  • Zhang, C. L., Han, Q. W., Chen, N. h., & Yuan, Y. h (2021). Research on developing drugs for Parkinson’s disease. Brain Research Bulletin, 168(July 2020), 100–109. https://doi.org/10.1016/j.brainresbull.2020.12.017
  • Zhang, F., Zhong, R. J., Cheng, C., Li, S., & Le, W. D (2021). New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacologica Sinica, 42 (9), 1382–1389. https://doi.org/10.1038/s41401-020-00565-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.