77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biochanin obstructs human serum albumin from non-enzymatic glycation: an in vitro approach

, , , , &
Received 07 Jan 2024, Accepted 20 Mar 2024, Published online: 07 May 2024

References

  • Ahmed, A., Shamsi, A., Khan, M. S., Husain, F. M., & Bano, B. (2018). Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach. International Journal of Biological Macromolecules, 113, 269–276. https://doi.org/10.1016/j.ijbiomac.2018.02.137
  • Anguizola, J., Matsuda, R., Barnaby, O. S., Hoy, K. S., Wa, C., DeBolt, E., Koke, M., & Hage, D. S. (2013). Review: Glycation of human serum albumin. Clinica Chimica Acta; International Journal of Clinical Chemistry, 425, 64–76. https://doi.org/10.1016/j.cca.2013.07.013
  • Barnaby, O. (2010). Characterization of glycation sites on human serum albumin using mass spectrometry.
  • Bayer, A. S., Scott, V. J., & Guze, L. B. (1979). Fungal arthritis. III. Sporotrichal arthritis. Seminars in Arthritis and Rheumatism, 9(1), 66–74. https://doi.org/10.1016/0049-0172(79)90003-9
  • Bhat, S. A., Sohail, A., Siddiqui, A. A., & Bano, B. (2014). Effect of non-enzymatic glycation on cystatin: A spectroscopic Study. Journal of Fluorescence, 24(4), 1107–1117. https://doi.org/10.1007/s10895-014-1391-2
  • Bhathena, S. J., & Velasquez, M. T. (2002). Beneficial role of dietary phytoestrogens in obesity and diabetes. The American Journal of Clinical Nutrition, 76(6), 1191–1201. https://doi.org/10.1093/ajcn/76.6.1191
  • Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules (Basel, Switzerland), 21(7), 901. https://doi.org/10.3390/molecules21070901
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 14101. https://doi.org/10.1063/1.2408420
  • Chtita, S., Fouedjou, R. T., Belaidi, S., Djoumbissie, L. A., Ouassaf, M., Qais, F. A., Bakhouch, M., Efendi, M., Tok, T. T., Bouachrine, M., & Lakhlifi, T. (2022). In silico investigation of phytoconstituents from Cameroonian medicinal plants towards COVID-19 treatment. Structural Chemistry, 33(5), 1799–1813. https://doi.org/10.1007/s11224-022-01939-7
  • Duru, K. C., Kovaleva, E. G., Danilova, I. G., van der Bijl, P., & Belousova, A. V. (2018). The potential beneficial role of isoflavones in type 2 diabetes mellitus. Nutrition Research (New York, N.Y.), 59, 1–15. https://doi.org/10.1016/j.nutres.2018.06.005
  • Ellman, G. L. (1959). Tissue sulfhydryl groups, Arch. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Fouedjou, R. T., Chtita, S., Bakhouch, M., Belaidi, S., Ouassaf, M., Djoumbissie, L. A., Tapondjou, L. A., & Abul Qais, F. (2022). Cameroonian medicinal plants as potential candidates of SARS-CoV-2 inhibitors. Journal of Biomolecular Structure & Dynamics, 40(19), 8615–8629. https://doi.org/10.1080/07391102.2021.1914170
  • Fouedjou, R. T., Fogang, H. P. D., Ouassaf, M., Daoui, O., Qais, F. A., Elkhattabi, S., Bakhouch, M., Belaidi, S., & Chtita, S. (2022). Targeting the main protease and the spike protein of SARS-COV-2 with naturally occurring compounds from some Cameroonian medicinal plants: An in-silico study for drug designing. Journal of the Chilean Chemical Society, 67(3), 5602–5614. https://doi.org/10.4067/S0717-97072022000305602
  • Haynes, R., Osuga, D. T., & Feeney, R. E. (1967). Modification of amino groups in inhibitors of proteolytic enzymes. Biochemistry, 6(2), 541–547. https://doi.org/10.1021/bi00854a023
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinforma, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Hussain, H., & Green, I. R. (2017). A patent review of the therapeutic potential of isoflavones (2012-2016). Expert Opinion on Therapeutic Patents, 27(10), 1135–1146. https://doi.org/10.1080/13543776.2017.1339791
  • Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules (Basel, Switzerland), 24(6), 1076. https://doi.org/10.3390/molecules24061076
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Longworth, J. (1983). Time-resolved fluorescence spectroscopy in biochemistry and biology.
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. http://www.ncbi.nlm.nih.gov/pubmed/14907713 (accessed September 15, 2017). https://doi.org/10.1016/S0021-9258(19)52451-6
  • M.M. Essa, M. Akbar, G. Guillemin, Eds., The Benefits of Natural Products for Neurodegenerative Diseases. Springer International Publishing. (2016). https://doi.org/10.1007/978-3-319-28383-8
  • Medjakovic, S., Mueller, M., & Jungbauer, A. (2010). Potential health-modulating effects of isoflavones and metabolites via activation of PPAR and AhR. Nutrients, 2(3), 241–279. https://doi.org/10.3390/nu2030241
  • Mishra, A., Qais, F. A., Pathak, Y., Camps, I., & Tripathi, V. (2022). Triamcinolone as a potential inhibitor of SARS-CoV-2 main protease and cytokine storm: An in-silico study. Lett. Drug Des. Discov, 20, 1230–1242. https://doi.org/10.2174/1570180819666220401142351
  • Mostrom, M., & Evans, T. J. (2018). Phytoestrogens. In Vet. Toxicol., Elsevier. pp. 817–833. https://doi.org/10.1016/B978-0-12-811410-0.00060-X
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Perrone, A., Giovino, A., Benny, J., & Martinelli, F. (2020). Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxidative Medicine and Cellular Longevity, 2020, 3818118–3818196. https://doi.org/10.1155/2020/3818196
  • Qais, F. A., Alam, M. M., Naseem, I., & Ahmad, I. (2016). Understanding the mechanism of non-enzymatic glycation inhibition by cinnamic acid: An in vitro interaction and molecular modelling study. RSC Advances, 6(70), 65322–65337. https://doi.org/10.1039/C6RA12321J
  • Qais, F. A., Alomar, S. Y., Imran, M. A., & Hashmi, M. A. (2022). In-silico analysis of phytocompounds of olea europaea as potential anti-cancer agents to target PKM2 protein. Molecules (Basel, Switzerland), 27(18), 5793. https://doi.org/10.3390/molecules27185793
  • Qais, F. A., Sarwar, T., Ahmad, I., Khan, R. A., Shahzad, S. A., & Husain, F. M. (2021). Glyburide inhibits non-enzymatic glycation of HSA: An approach for the management of AGEs associated diabetic complications. International Journal of Biological Macromolecules, 169, 143–152. https://doi.org/10.1016/j.ijbiomac.2020.12.096
  • Raghav, A., Ahmad, J., & Alam, K. (2017). Nonenzymatic glycosylation of human serum albumin and its effect on antibodies profile in patients with diabetes mellitus. PLoS One. 12(5), e0176970. https://doi.org/10.1371/journal.pone.0176970
  • Ramasamy, R., Vannucci, S. J., Du Yan, S. S., Herold, K., Yan, S. F., & Schmidt, A. M. (2005). Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 15(7), 16R–28R. https://doi.org/10.1093/glycob/cwi053
  • Riaz, S., Siddiqui, S., Qais, F. A., Mateen, S., & Moin, S. (2024). Inhibitory effect of baicalein against glycation in HSA : An in vitro approach. Journal of Biomolecular Structure & Dynamics, 42(2), 935–947. https://doi.org/10.1080/07391102.2023.2201856
  • Sahu, A., & Sarkar, P. D. (2008). Comparative study of NBT reduction method for estimation of glycated protein (serum fructoseamine) with glycated HbA1c estimated on DCA 2000 + analyzer (immunoagglutination inhibition). Indian Journal of Physiology and Pharmacology, 52(4), 408–412.
  • Siddiqui, S., Ameen, F., Kausar, T., Nayeem, S. M., Ur Rehman, S., & Tabish, M. (2021). Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: An in vitro and in silico approach. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 249, 119296. https://doi.org/10.1016/j.saa.2020.119296
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE—AnteChamber PYthon Parser interfacE, BMC. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • Sundaresan, A., Radhiga, T., & Deivasigamani, B. (2018). Biological activity of BCA: A review. Asian Journal of Pharmacy and Pharmacology, 4(1), 1–5. https://doi.org/10.31024/ajpp.2018.4.1.1
  • Talaei, M., & Pan, A. (2015). Role of phytoestrogens in prevention and management of type 2 diabetes. World Journal of Diabetes, 6(2), 271–283. https://doi.org/10.4239/wjd.v6.i2.271
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Umeno, A., Horie, M., Murotomi, K., Nakajima, Y., & Yoshida, Y. (2016). Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules (Basel, Switzerland), 21(6), 708. https://doi.org/10.3390/molecules21060708
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Yanagihara, K., Ito, A., Toge, T., & Numoto, M. (1993). Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Research, 53, 5815–5821.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.