258
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico analysis and characterization of potential inhibitors of MmaA3, a methoxy mycolic acid synthase from Mycobacterium tuberculosis

, , , , &
Received 17 Jan 2024, Accepted 23 Mar 2024, Published online: 10 May 2024

References

  • Abdelraheem, E., Thair, B., Varela, R. F., Jockmann, E., Popadić, D., Hailes, H. C., Ward, J. M., Iribarren, A. M., Lewkowicz, E. S., Andexer, J. N., Hagedoorn, P.-L., & Hanefeld, U. (2022). Methyltransferases: Functions and applications. Chembiochem: A European Journal of Chemical Biology, 23(18), e202200212. https://doi.org/10.1002/cbic.202200212
  • Adewumi, A. T., Soremekun, O. S., Ajadi, M. B., & Soliman, M. E. S. (2020). Thompson loop: Opportunities for antitubercular drug design by targeting the weak spot in demethylmenaquinone methyltransferase protein. RSC Advances, 10(39), 23466–23483. https://doi.org/10.1039/d0ra03206a
  • Ahmad, B., Ali, A., Raziq, S., Khan, A., Aziz, A., Ullah, F., Ahmad, S., Ul Haq, A., Ullah, I., Khan, I., & Ishaq, M. (2021). Biochemical composition of fish and changes during processing and storage: A review. Bioscience Research, 18(2), 1903–1913. www.isisn.org
  • Al Dulayymi, J. R., Baird, M. S., Maza-Iglesias, M., Hameed, R. T., Baols, K. S., Muzael, M., & Saleh, A. D. (2014). Synthetic trehalose di- and mono-esters of α-, methoxy- and keto-mycolic acids. Tetrahedron, 70(52), 9836–9852. https://doi.org/10.1016/j.tet.2014.10.072
  • Angell, R. M., Bamborough, P., Cleasby, A., Cockerill, S. G., Jones, K. L., Mooney, C. J., Somers, D. O., & Walker, A. L. (2008). Biphenyl amide p38 kinase inhibitors 1: Discovery and binding mode. Bioorganic & Medicinal Chemistry Letters, 18(1), 318–323. https://doi.org/10.1016/j.bmcl.2007.10.076
  • Angili, S. N., Morovvati, M. R., Kardan-Halvaei, M., Saber-Samandari, S., Razmjooee, K., Abed, A. M., Toghraie, D., & Khandan, A. (2023). Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration. International Journal of Biological Macromolecules, 224, 1152–1165. https://doi.org/10.1016/j.ijbiomac.2022.10.200
  • Asthana, S., Shukla, S., Vargiu, A. V., Ceccarelli, M., Ruggerone, P., Paglietti, G., Marongiu, M. E., Blois, S., Giliberti, G., & La Colla, P. (2013). Different molecular mechanisms of inhibition of bovine viral diarrhea virus and hepatitis C virus RNA-dependent RNA polymerases by a novel benzimidazole. Biochemistry, 52(21), 3752–3764. https://doi.org/10.1021/bi400107h
  • Balogun, M. O., Huws, E. H., Sirhan, M. M., Saleh, A. D., Al Dulayymi, J. R., Pilcher, L., Verschoor, J. A., & Baird, M. S. (2013). Thiol modified mycolic acids. Chemistry and Physics of Lipids, 172–173, 40–55. https://doi.org/10.1016/j.chemphyslip.2013.03.004
  • Basu, D., Pal, R., Sarkar, M., Barma, S., Halder, S., Roy, H., Nandi, S., & Samadder, A. (2023). To investigate growth factor receptor targets and generate cancer targeting inhibitors. Current Topics in Medicinal Chemistry, 23(30), 2877–2972. https://doi.org/10.2174/0115680266261150231110053650
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England), 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(Web Server issue), W510–W514. https://doi.org/10.1093/nar/gkp322
  • Boissier, F., Bardou, F., Guillet, V., Uttenweiler-Joseph, S., Daffé, M., Quémard, A., & Mourey, L. (2006). Further insight into S-adenosylmethionine-dependent methyltransferases. The Journal of Biological Chemistry, 281(7), 4434–4445. https://doi.org/10.1074/jbc.M510250200
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 84-es. https://doi.org/10.1109/SC.2006.54
  • Buskes, M. J., Clements, M., Bachovchin, K. A., Jalani, H. B., Leonard, A., Bag, S., Klug, D. M., Singh, B., Campbell, R. F., Sciotti, R. J., El-Sakkary, N., Caffrey, C. R., Pollastri, M. P., & Ferrins, L. (2020). Structure–bioactivity relationships of lapatinib derived analogs against Schistosoma mansoni. ACS Medicinal Chemistry Letters, 11(3), 258–265. https://doi.org/10.1021/acsmedchemlett.9b00455
  • Butina, D., Segall, M. D., & Frankcombe, K. (2002). Predicting ADME properties in silico: Methods and models. Drug Discovery Today, 7(11), S83–S88. https://doi.org/10.1016/s1359-6446(02)02288-2
  • Danielson, M. L., & Lill, M. A. (2012). Predicting flexible loop regions that interact with ligands: The challenge of accurate scoring. Proteins: Structure, Function and Bioinformatics, 80(1), 246–260. https://doi.org/10.1002/prot.23199
  • Debnath, J., Siricilla, S., Wan, B., Crick, D. C., Lenaerts, A. J., Franzblau, S. G., & Kurosu, M. (2012). Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. Journal of Medicinal Chemistry, 55(8), 3739–3755. https://doi.org/10.1021/jm201608g
  • Defelipe, L. A., Osman, F., Marti, M. A., & Turjanski, A. G. (2018). Structural and mechanistic comparison of the Cyclopropane Mycolic Acid Synthases (CMAS) protein family of Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 498(2), 288–295. https://doi.org/10.1016/j.bbrc.2017.08.119
  • Devine, W., Thomas, S. M., Erath, J., Bachovchin, K. A., Lee, P. J., Leed, S. E., Rodriguez, A., Sciotti, R. J., Mensa-Wilmot, K., & Pollastri, M. P. (2017). Antiparasitic lead discovery: Toward optimization of a chemotype with activity against multiple protozoan parasites. ACS Medicinal Chemistry Letters, 8(3), 350–354. https://doi.org/10.1021/acsmedchemlett.7b00011
  • Devine, W., Woodring, J. L., Swaminathan, U., Amata, E., Patel, G., Erath, J., Roncal, N. E., Lee, P. J., Leed, S. E., Rodriguez, A., Mensa-Wilmot, K., Sciotti, R. J., & Pollastri, M. P. (2015). Protozoan parasite growth inhibitors discovered by cross-screening yield potent scaffolds for lead discovery. Journal of Medicinal Chemistry, 58(14), 5522–5537. https://doi.org/10.1021/acs.jmedchem.5b00515
  • Dhiman, R. K., Mahapatra, S., Slayden, R. A., Boyne, M. E., Lenaerts, A., Hinshaw, J. C., Angala, S. K., Chatterjee, D., Biswas, K., Narayanasamy, P., Kurosu, M., & Crick, D. C. (2009). Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Molecular Microbiology, 72(1), 85–97. https://doi.org/10.1111/j.1365-2958.2009.06625.x
  • Dubnau, E., Lanéelle, M. A., Soares, S., Bénichou, A., Vaz, T., Promé, D., Promé, J. C., Daffé, M., & Quémard, A. (1997). Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto‐ and hydroxy‐mycolic acids. Molecular Microbiology, 23(2), 313–322. https://doi.org/10.1046/j.1365-2958.1997.2301589.x
  • Farazin, A., Aghadavoudi, F., Motififard, M., Saber-Samandari, S., & Khandan, A. (2021). Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles. Journal of Applied and Computational Mechanics, 7, 1907–1915.
  • Fernandez, R. A., Quimque, M. T., Notarte, K. I., Manzano, J. A., Pilapil, D. Y., de Leon, V. N., San Jose, J. J., Villalobos, O., Muralidharan, N. H., Gromiha, M. M., Brogi, S., & Macabeo, A. P. G. (2022). Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein. Journal of Biomolecular Structure & Dynamics, 40(22), 12209–12220. https://doi.org/10.1080/07391102.2021.1969281
  • Foo, C. S. Y., Pethe, K., & Lupien, A. (2020). Oxidative phosphorylation—an update on a new, essential target space for drug discovery in Mycobacterium tuberculosis. Applied Sciences, 10(7), 2339. https://doi.org/10.3390/app10072339
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gabr, M. T., & Abdel-Raziq, M. S. (2018). Pharmacophore-based tailoring of biphenyl amide derivatives as selective 5-hydroxytryptamine 2B receptor antagonists. Medchemcomm, 9(6), 1069–1075. https://doi.org/10.1039/c8md00204e
  • Galy, R., Ballereau, S., Génisson, Y., Mourey, L., Plaquevent, J.-C., & Maveyraud, L. (2021). Fragment-based ligand discovery applied to the mycolic acid methyltransferase hma (Mmaa4) from mycobacterium tuberculosis: A crystallographic and molecular modelling study. Pharmaceuticals, 14(12), 1282. https://doi.org/10.3390/ph14121282
  • Genheden, S., Kuhn, O., Mikulskis, P., Hoffmann, D., & Ryde, U. (2012). The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. Journal of Chemical Information and Modeling, 52(8), 2079–2088. https://doi.org/10.1021/ci3001919
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghasemi, F., Zomorodipour, A., Karkhane, A. A., & Khorramizadeh, M. R. (2016). In silico designing of hyper-glycosylated analogs for the human coagulation factor IX. Journal of Molecular Graphics & Modelling, 68, 39–47. https://doi.org/10.1016/j.jmgm.2016.05.011
  • Glickman, M. S. (2003). The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the α-mycolic acid. The Journal of Biological Chemistry, 278(10), 7844–7849. https://doi.org/10.1074/jbc.M212458200
  • Granito, A., Forgione, A., Marinelli, S., Renzulli, M., Ielasi, L., Sansone, V., Benevento, F., Piscaglia, F., & Tovoli, F. (2021). Experience with regorafenib in the treatment of hepatocellular carcinoma. Therapeutic Advances in Gastroenterology, 14, 17562848211016959. https://doi.org/10.1177/17562848211016959
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hima, V. A. M., & Namboori, P. K. K. (2021). Identification of lapatinib derivatives and analogs to control metastatic breast cancer-specific to South Asian population-a pharmacogenomic approach. WSEAS Transactions on Biology and Biomedicine, 18, 51–62. https://doi.org/10.37394/23208.2021.18.6
  • Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M., & Engelhardt, H. (2008). Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3963–3967. https://doi.org/10.1073/pnas.0709530105
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hu, X., Wang, H., Ke, H., & Kuhlman, B. (2007). High-resolution design of a protein loop. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 17668–17673. https://doi.org/10.1073/pnas.0707977104
  • Huang, C. C., Smith, C. V., Glickman, M. S., Jacobs, W. R., & Sacchettini, J. C. (2002). Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis. The Journal of Biological Chemistry, 277(13), 11559–11569. https://doi.org/10.1074/jbc.M111698200
  • Huang, Y., Ai, L., Wang, X., Sun, Z., & Wang, F. (2022). Review and updates on the diagnosis of tuberculosis. Journal of Clinical Medicine, 11(19), 5826. https://doi.org/10.3390/jcm11195826
  • Hubbard, R. E., & Muhammad, K. H. (2010). Hydrogen bonds in proteins: Role and strength. In Encyclopedia of life sciences. Hoboken: Wiley. https://doi.org/10.1002/9780470015902.a0003011.pub2
  • Ioerger, T. R., & Sacchettini, J. C. (2009). Structural genomics approach to drug discovery for Mycobacterium tuberculosis. Current Opinion in Microbiology, 12(3), 318–325. https://doi.org/10.1016/j.mib.2009.04.006
  • Iqbal, I., Bajeli, S., Akela, A., & Kumar, A. (2018). Bioenergetics of mycobacterium: An emerging landscape for drug discovery. Pathogens (Basel, Switzerland), 7(1), 24. https://doi.org/10.3390/pathogens7010024
  • Isa, M. A. (2019). Homology modeling and in silico toxicity assessment of potential inhibitors of cytidylate kinase from Mycobacterium tuberculosis. Network Modeling Analysis in Health Informatics and Bioinformatics, 8(1), 16. https://doi.org/10.1007/s13721-019-0191-7
  • Johnston, S. R. D., & Leary, A. (2006). Lapatinib: A novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drugs of Today (Barcelona, Spain: 1998), 42(7), 441–453. https://doi.org/10.1358/dot.2006.42.7.985637
  • Jones, A., Pitts, M., Al Dulayymi, J. R., Gibbons, J., Ramsay, A., Goletti, D., Gwenin, C. D., & Baird, M. S. (2017). New synthetic lipid antigens for rapid serological diagnosis of tuberculosis. PLoS One, 12(8), e0181414. https://doi.org/10.1371/JOURNAL.PONE.0181414
  • Krishnamohan, A., & Jackman, J. E. (2019). A family divided: Distinct structural and mechanistic features of the SpoU-TrmD (SPOUT) methyltransferase superfamily. Biochemistry, 58(5), 336–345. https://doi.org/10.1021/acs.biochem.8b01047
  • Kumari, A., Mittal, L., Srivastava, M., & Asthana, S. (2022). Binding mode characterization of 13b in the monomeric and dimeric states of SARS-CoV-2 main protease using molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(19), 9287–9305. https://doi.org/10.1080/07391102.2021.1927844
  • Kumari, A., Mittal, L., Srivastava, M., Pathak, D. P., & Asthana, S. (2023). Deciphering the structural determinants critical in attaining the FXR partial agonism. The Journal of Physical Chemistry. B, 127(2), 465–485. https://doi.org/10.1021/acs.jpcb.2c06325
  • Kumari, A., Mittal, L., Srivastava, M., Pathak, D. P., & Asthana, S. (2021). Conformational characterization of the co-activator binding site revealed the mechanism to achieve the bioactive state of FXR. Frontiers in Molecular Biosciences, 8, 658312. https://doi.org/10.3389/fmolb.2021.658312
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Mandal, R. S., & Das, S. (2015). In silico approach towards identification of potential inhibitors of Helicobacter pylori DapE. Journal of Biomolecular Structure & Dynamics, 33(7), 1460–1473. https://doi.org/10.1080/07391102.2014.954272
  • Marrakchi, H., Lanéelle, M.-A., & Daffé, M. (2014). Mycolic acids: Structures, biosynthesis, and beyond. Chemistry & Biology, 21(1), 67–85. https://doi.org/10.1016/j.chembiol.2013.11.011
  • Martin, J. L., & McMillan, F. M. (2002). SAM (dependent) I AM: The S-adenosylmethionine-dependent methyltransferase fold. Current Opinion in Structural Biology, 12(6), 783–793. https://doi.org/10.1016/s0959-440x(02)00391-3
  • Mehta, N., Ferrins, L., Leed, S. E., Sciotti, R. J., & Pollastri, M. P. (2018). Optimization of physicochemical properties for 4-anilinoquinoline inhibitors of plasmodium falciparum proliferation. ACS Infectious Diseases, 4(4), 577–591. https://doi.org/10.1021/acsinfecdis.7b00212
  • Milik, M., Szalma, S., & Olszewski, K. A. (2003). Common structural cliques: A tool for protein structure and function analysis. Protein Engineering, 16(8), 543–552. https://doi.org/10.1093/protein/gzg080
  • Mittal, L., Kumari, A., Srivastava, M., Singh, M., & Asthana, S. (2021). Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach. Journal of Biomolecular Structure & Dynamics, 39(10), 3662–3680. https://doi.org/10.1080/07391102.2020.1768151
  • Mittal, L., Kumari, A., Suri, C., Bhattacharya, S., & Asthana, S. (2020). Insights into structural dynamics of allosteric binding sites in HCV RNA-dependent RNA polymerase. Journal of Biomolecular Structure & Dynamics, 38(6), 1612–1625. https://doi.org/10.1080/07391102.2019.1614480
  • Miyauchi, M., Murata, M., Shibuya, K., Koga-Yamakawa, E., Uenishi, Y., Kusunose, N., Sunagawa, M., Yano, I., & Kashiwazaki, Y. (2011). Arabino-mycolates derived from cell-wall skeleton of Mycobacterium bovis BCG as a prominent structure for recognition by host immunity. Drug Discoveries & Therapeutics, 5(3), 130–135. https://doi.org/10.5582/ddt.2011.v5.3.130
  • Mohammed, M. O., Al Dulayymi, J. R., & Baird, M. S. (2017). Preparation of the tri-arabino di-mycolate fragment of mycobacterial arabinogalactan from defined synthetic mycolic acids. Carbohydrate Research, 437, 36–42. https://doi.org/10.1016/j.carres.2016.11.006
  • Nelson, M. H., & Dolder, C. R. (2007). A review of lapatinib ditosylate in the treatment of refractory or advanced breast cancer. Therapeutics and Clinical Risk Management, 3(4), 665–673.
  • Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 5(8), e12029. https://doi.org/10.1371/journal.pone.0012029
  • Petronikolou, N., & Nair, S. K. (2015). Biochemical studies of mycobacterial fatty acid methyltransferase: A catalyst for the enzymatic production of biodiesel. Chemistry & Biology, 22(11), 1480–1490. https://doi.org/10.1016/j.chembiol.2015.09.011
  • Rao, V., Fujiwara, N., Porcelli, S. A., & Glickman, M. S. (2005). Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. The Journal of Experimental Medicine, 201(4), 535–543. https://doi.org/10.1084/jem.20041668
  • Rao, V., Gao, F., Chen, B., Jacobs, W. R., & Glickman, M. S. (2006). Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. The Journal of Clinical Investigation, 116(6), 1660–1667. https://doi.org/10.1172/JCI27335
  • Rasoolidanesh, M., Astaraki, M., Mostafavi, M., Rezvani, M., & Darvish Ganji, M. (2021). Toward efficient enantioseparation of ibuprofen isomers using chiral BNNTs: Dispersion corrected DFT calculations and DFTB molecular dynamic simulations. Diamond and Related Materials, 119, 108561. https://doi.org/10.1016/j.diamond.2021.108561
  • Rezvani, M., Astaraki, M., Rahmanzadeh, A., & Darvish Ganji, M. (2021). Theoretical assessments on the interaction between amino acids and the g-Mg3N2monolayer: Dispersion corrected DFT and DFT-MD simulations. Physical Chemistry Chemical Physics: PCCP, 23(32), 17440–17452. https://doi.org/10.1039/d1cp02891j
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web Server issue), W320–W324. https://doi.org/10.1093/nar/gku316
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Schrödinger, LLC. (2015). The PyMOL molecular graphics system, Version∼1.8. Schrödinger, LLC.
  • Schrödinger, LLC. (2017a). 1: Maestro. Schrödinger, LLC.
  • Schrödinger, LLC. (2017b). 4: LigPrep. Schrödinger, LLC.
  • Schrödinger, LLC. (2019a). 1: Receptor grid generation. Schrödinger, LLC.
  • Schrödinger, LLC. (2019b). Schrödinger release 2019-3: Glide. Schrödinger, LLC. Schrödinger Release 2018-3: LigPrep, Schrödinger, LLC, New York, NY, 2018. (2018).
  • Schrödinger, LLC. (2024). Schrödinger release 2024-1: QikProp. Schrödinger, LLC. Preprint at (2024).
  • Schubert, H. L., Blumenthal, R. M., & Cheng, X. (2003a). Many paths to methyltransfer: A chronicle of convergence. Trends in Biochemical Sciences, 28(6), 329–335. https://doi.org/10.1016/S0968-0004(03)00090-2
  • Sekanka, G., Baird, M., Innikin, D., & Grooten, J. (2007b). Mycolic acids for the control of tuberculosis. Expert Opinion on Therapeutic Patents, 17(3), 315–331. https://doi.org/10.1517/13543776.17.3.315
  • Sisodia, R., Mazumdar, P. A., & Madhurantakam, C. (2023). In silico identification and analysis of potential inhibitors for acid phosphatase, HppA from Helicobacter pylori. Journal of Molecular Recognition, 36(9), e3049. https://doi.org/10.1002/jmr.3049
  • Sisodia, R., Sarmadhikari, D., Mazumdar, P. A., Asthana, S., & Madhurantakam, C. (2023). Molecular analysis of dUTPase of Helicobacter pylori for identification of novel inhibitors using in silico studies. Journal of Biomolecular Structure & Dynamics, 1–26. https://doi.org/10.1080/07391102.2023.2247080
  • Smet, M., Pollard, C., De Beuckelaer, A., Van Hoecke, L., Vander Beken, S., De Koker, S., Al Dulayymi, J. R., Huygen, K., Verschoor, J., Baird, M. S., & Grooten, J. (2016). Mycobacterium tuberculosis-associated synthetic mycolates differentially exert immune stimulatory adjuvant activity. European Journal of Immunology, 46(9), 2149–2154. https://doi.org/10.1002/eji.201646357
  • Srivastava, M., Mittal, L., Kumari, A., & Asthana, S. (2021). Molecular dynamics simulations reveal the interaction fingerprint of remdesivir triphosphate pivotal in allosteric regulation of SARS-CoV-2 RdRp. Frontiers in Molecular Biosciences, 8, 639614. https://doi.org/10.3389/fmolb.2021.639614
  • Srivastava, M., Mittal, L., Sarmadhikari, D., Singh, V. K., Fais, A., Kumar, A., & Asthana, S. (2023). Template entrance channel as possible allosteric inhibition and resistance site for quinolines tricyclic derivatives in RNA dependent RNA polymerase of bovine viral diarrhea virus. Pharmaceuticals, 16(3), 376. https://doi.org/10.3390/ph16030376
  • Srivastava, M., Suri, C., Singh, M., Mathur, R., & Asthana, S. (2018). Molecular dynamics simulation reveals the possible druggable hot-spots of USP7. Oncotarget, 9(76), 34289–34305. https://doi.org/10.18632/oncotarget.26136
  • Struck, A. W., Thompson, M. L., Wong, L. S., & Micklefield, J. (2012). S-Adenosyl-methionine-dependent methyltransferases: Highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. Chembiochem: A European Journal of Chemical Biology, 13(18), 2642–2655. https://doi.org/10.1002/cbic.201200556
  • Sukheja, P., Kumar, P., Mittal, N., Li, S.-G., Singleton, E., Russo, R., Perryman, A. L., Shrestha, R., Awasthi, D., Husain, S., Soteropoulos, P., Brukh, R., Connell, N., Freundlich, J. S., & Alland, D. (2017). A novel small-molecule inhibitor of the Mycobacterium tuberculosis demethylmenaquinone methyltransferase MenG is bactericidal to both growing and nutritionally deprived persister cells. mBio, 8(1), e02022-16. https://doi.org/10.1128/mBio.02022-16
  • Suresh, A., Srinivasarao, S., Khetmalis, Y. M., Nizalapur, S., Sankaranarayanan, M., & Gowri Chandra Sekhar, K. V. (2020). Inhibitors of pantothenate synthetase of Mycobacterium tuberculosis – a medicinal chemist perspective. RSC Advances, 10(61), 37098–37115. https://doi.org/10.1039/d0ra07398a
  • Takayama, K., Wang, C., & Besra, G. S. (2005). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clinical Microbiology Reviews, 18(1), 81–101. https://doi.org/10.1128/CMR.18.1.81-101.2005
  • Tevaarwerk, A. J., & Kolesar, J. M. (2009). Lapatinib: A small-molecule inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases used in the treatment of breast cancer. Clinical Therapeutics, 31 Pt 2, 2332–2348. https://doi.org/10.1016/j.clinthera.2009.11.029
  • Tima, H. G., Al Dulayymi, J. R., Denis, O., Lehebel, P., Baols, K. S., Mohammed, M. O., L'Homme, L., Sahb, M. M., Potemberg, G., Legrand, S., Lang, R., Beyaert, R., Piette, J., Baird, M. S., Huygen, K., & Romano, M. (2017). Inflammatory properties and adjuvant potential of synthetic glycolipids homologous to mycolate esters of the cell wall of Mycobacterium tuberculosis. Journal of Innate Immunity, 9(2), 162–180. https://doi.org/10.1159/000450955
  • Vander Beken, S., Al Dulayymi, J. R., Naessens, T., Koza, G., Maza-Iglesias, M., Rowles, R., Theunissen, C., De Medts, J., Lanckacker, E., Baird, M. S., & Grooten, J. (2011). Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. European Journal of Immunology, 41(2), 450–460. https://doi.org/10.1002/eji.201040719
  • Vaubourgeix, J., Bardou, F., Boissier, F., Julien, S., Constant, P., Ploux, O., Daffé, M., Quémard, A., & Mourey, L. (2009). S-Adenosyl-N-decyl-aminoethyl, a potent bisubstrate inhibitor of Mycobacterium tuberculosis mycolic acid methyltransferases. The Journal of Biological Chemistry, 284(29), 19321–19330. https://doi.org/10.1074/jbc.M809599200
  • Veeravarapu, H., Malkhed, V., Mustyala, K. K., Vadija, R., Malikanti, R., Vuruputuri, U., & Muthyala, M. K. K. (2021). Structure-based drug design, synthesis and screening of MmaA1 inhibitors as novel anti-TB agents. Molecular Diversity, 25(1), 351–366. https://doi.org/10.1007/s11030-020-10107-0
  • Wahdan-Alaswad, R., Liu, B., & Thor, A. D. (2020). Targeted lapatinib anti-HER2/ErbB2 therapy resistance in breast cancer: Opportunities to overcome a difficult problem. Cancer Drug Resistance (Alhambra, CA), 3(2), 179–198. https://doi.org/10.20517/cdr.2019.92
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • White, E. L., Southworth, K., Ross, L., Cooley, S., Gill, R. B., Sosa, M. I., Manouvakhova, A., Rasmussen, L., Goulding, C., Eisenberg, D., & Fletcher, T. M. (2007). A novel inhibitor of Mycobacterium tuberculosis pantothenate synthetase. Journal of Biomolecular Screening, 12(1), 100–105. https://doi.org/10.1177/1087057106296484
  • Wilhelm, S. M., Dumas, J., Adnane, L., Lynch, M., Carter, C. A., Schütz, G., Thierauch, K.-H., & Zopf, D. (2011). Regorafenib (BAY 73‐4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. International Journal of Cancer, 129(1), 245–255. https://doi.org/10.1002/ijc.25864
  • Wong, S., & Jacobson, M. P. (2008). Conformational selection in silico : Loop latching motions and ligand binding in enzymes. Proteins: Structure, Function, and Bioinformatics, 71(1), 153–164. https://doi.org/10.1002/prot.21666
  • Woodring, J. L., Bachovchin, K. A., Brady, K. G., Gallerstein, M. F., Erath, J., Tanghe, S., Leed, S. E., Rodriguez, A., Mensa-Wilmot, K., Sciotti, R. J., & Pollastri, M. P. (2017). Optimization of physicochemical properties for 4-anilinoquinazoline inhibitors of trypanosome proliferation. European Journal of Medicinal Chemistry, 141, 446–459. https://doi.org/10.1016/j.ejmech.2017.10.007
  • World Health Organization. (2020). Global tuberculosis report 2020. World Health Organization.
  • Yadav, R., Imran, M., Dhamija, P., Suchal, K., & Handu, S. (2021). Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(12), 4433–4448. https://doi.org/10.1080/07391102.2020.1778536
  • Yan, W., Zheng, Y., Dou, C., Zhang, G., Arnaout, T., & Cheng, W. (2022). The pathogenic mechanism of Mycobacterium tuberculosis: Implication for new drug development. Molecular Biomedicine, 3(1), 48. https://doi.org/10.1186/s43556-022-00106-y
  • Yuan, Y., Zhu, Y. Q., Crane, D. D., & Barry, C. E. (1998). The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Molecular Microbiology, 29(6), 1449–1458. https://doi.org/10.1046/j.1365-2958.1998.01026.x
  • Zubieta, C., Ross, J. R., Koscheski, P., Yang, Y., Pichersky, E., & Noel, J. P. (2003). Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. The Plant Cell, 15(8), 1704–1716. https://doi.org/10.1105/tpc.014548

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.