Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 3
152
Views
16
CrossRef citations to date
0
Altmetric
Original

Epigenetic Maternal Effects on Endogenous Rhythms in Precocial Birds

, , &
Pages 396-414 | Received 26 Sep 2008, Accepted 13 Jan 2009, Published online: 07 Jul 2009

References

  • Anglès‐Pujolràs M, Diez‐Noguera A, Cambras T. Exposure to T‐cycles of 22 and 23 h during lactation modifies the later dissociation of motor activity and temperature circadian rhythms in rats. Chronobiol. Int. 2007; 24: 1049–1064
  • Aschoff J, Gerkema M. On diversity and uniformity of ultradian rhythms. Ultradian rhythms in physiology and behaviour, H Schulz, P Lavie. Springer‐Verlag, Berlin 1985; 321–334
  • Bertin A, Richard‐Yris M A. Mothering during early development influences subsequent emotional and social behaviour in Japanese quail. J. Exp. Zool. 2005; 303: 792–801
  • Bertin A, Houdelier C, Richard‐Yris M A, Guyomarc'h C, Lumineau S. Stable individual profiles of daily timing of migratory restlessness in European quail. Chronobiol. Int. 2007; 24: 253–267
  • Binkley S, Geller E B. Pineal enzymes in chickens: Development of daily rhythmicity. Gen. Comp. Endocrinol. 1975; 27: 424–429
  • Bishnupuri K S, Haldar C. Maternal transfer of melatonin alters the growth and sexual maturation of young Indian palm squirrel. Funambulus pennanti. Biol. Signal. Recept. 2001; 10: 317–325
  • Champagne F, Meaney M J. Like mother, like daughter: Evidence for non‐genomic transmission of parental behaviour and stress responsivity. Progress in brain research, J A Russell, et al. Elsevier, Amsterdam 2001; 287–302
  • Duffield G E, Ebling F JP. Maternal entrainment of the developing circadian system in the siberian hamster (Phodopus sungorus). J. Biol. Rhythms 1998; 13: 315–329
  • Favreau A, Richard‐Yris M A, Houdelier C, Bertin A, Lumineau S. Social influences on circadian behavioural rhythms in vertebrates. Anim. Behav. 2009, doi: 10.1016
  • Formanek L, Houdelier C, Lumineau S, Bertin A, Richard‐Yris M A. Maternal epigenetic transmission of social motivation in birds. Ethology 2008; 114: 817–826
  • Francis D, Diorio J, Liu D, Meaney M J. Nongenomic transmission across generations in maternal behaviour and stress responses in the rat. Science 1999; 286: 1155–1158
  • Guyomarc'h J C. Les cycles d'activités d'une couvée naturelle de poussins et leur coordination. Behaviour 1975; 53: 31–75
  • Guyomarc'h J C. Elements for a common quail (Coturnix c. coturnix) management plan. Game Wildlife Sci. 2003; 20: 1–92
  • Guyomarc'h C, Guyomarc'h J C. Testosterone levels and the free running rhythms of feeding activity in Japanese quail in darkness. Gen. Comp. Endocrinol. 1994; 96: 165–171
  • Guyomarc'h C, Lumineau S, Richard J P. Circadian rhythm of activity in Japanese quail in constant darkness: Variability of clarity and possibility of selection. Chronobiol. Int. 1998; 15: 219–230
  • Helfer G, Fidler A E, Vallone D, Foulkes N S, Brandstaetter R. Molecular analysis of clock gene expression in the avian brain. Chronobiol. Int. 2006; 23: 113–127
  • Hofer M A. Parental contributions to the development of their offspring. Parental care in mammals, D J Gubernick, P H Klopfer. Plenum Press, New York 1981; 77–115
  • Hogan‐Warburg A J, Panning L, Hogan J A. Analysis of the brooding cycle of broody junglefowl hens with chicks. Behaviour 1993; 125: 21–37
  • Houdelier C, Guyomarc'h C, Lumineau S. Daily temporal organization of laying in Japanese quail: Variability and heritability. Chronobiol. Int. 2002; 19: 377–392
  • Ihaka R, Gentleman R. R: A language for data analysis and graphics. J. Comput. Graphic. Stat. 1996; 5: 299–314
  • Jilge B. Ontogeny of the rabbit's circadian rhythms without an external zeitgeber. Physiol. Behav. 1995; 58: 131–140
  • Kendrick K M, Haupt M A, Hinton M R, Broad K D, Skinner J D. Sex differences in the influence of mothers on the sociosexual preferences of their offspring. Horm. Behav. 2001; 40: 322–338
  • Lavie P. Ultradian rhythms in arousal—the problem of masking. Chronobiol. Int. 1989; 6: 21–28
  • Levine S, Mody T. The long‐term psychobiological consequences of intermittent postnatal separation in the squirrel monkey. Neurosci. Biobehav. Rev. 2003; 27: 83–89
  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freeman A, Sharma S, Pearson D, Plotsky P M, Meaney M J. Maternal care, hippocampal glucocorticoid receptors and hypothalamic‐pituitary‐adrenal responses to stress. Science 1997; 277: 1659–1662
  • Lumineau S, Guyomarc'h C, Richard J P. Ontogeny of the ultradian rhythm of activity in Japanese quail. Chronobiol. Int. 2000; 17: 767–776
  • Lumineau S, Guyomarc'h C, Richard J P. Ultradian rhythm of activity in Japanese quail groups under semi‐natural conditions during ontogeny: Functional aspect and relation to circadian rhythm. Biol. Rhythm Res. 2001; 32: 373–388
  • Lumineau S, Richard‐Yris M A, Houdelier C. Clarity of circadian rhythm favours the synchronisation on a 24 h-period photoperiodic cycle in Japanese quail. in prep
  • Lupfer G, Frieman J, Coonfield D. Social transmission of flavor preferences in two species of hamsters (Mesocricetus auratus and Phodopus campbelli). J. Comp. Psychol. 2003; 117: 449–455
  • Mistlberger R A, Skene D J. Social influences on mammalian circadian rhythms: Animal and human studies. Biol. Rev. 2004; 79: 533–556
  • Nielsen B L, Erhard H W, Friggens N C, McLeod J E. Ultradian activity rhythms in large groups of newly hatched chicks (Gallus gallus domesticus). Behav. Process. 2008; 78: 408–415
  • Nowak R, Young I R, McMillen I C. Emergence of the diurnal rhythm in plasma melatonin concentrations in newborn lambs delivered to intact or pinealectomized ewes. J. Endocrinol. 1990; 125: 97–102
  • Okabayashi N, Yasuo S, Watanabe M, Namikawa T, Ebihara S, Yoshimura T. Ontogeny of circadian clock gene expression in the pineal and the suprachiasmatic nucleus of chick embryo. Brain Res. 2003; 990: 231–234
  • Orcutt F S, Jr, Orcutt A B. Nesting and parental behavior in domestic common quail. The Auk. 1976; 93: 135–141
  • Portaluppi F, Touitou Y, Smolensky M H. Ethical and methological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 2008; 25: 999–1016
  • Pratt B L, Goldman B D. Maternal influence on activity rhythms and reproductive development in Djungarian hamster pups. Biol. Repro. 1986; 34: 655–663
  • Pryce C R, Rüedi‐Bettschen D, Dettling A C, Weston A, Russig H, Ferger B, Feldon J. Long‐term effects of early‐life environmental manipulations in rodents and primates: Potential animal models in depression research. Neurosci. Biobehav. Rev. 2005; 29: 649–674
  • Randall R B, Tech BA. Frequency analysis3. Brüel & Kjaer, Denmark 1987; 344
  • Reppert S M, Klein D C. Transport of maternal [3H]melatonin to suckling rats and the fate of [3H]melatonin in the neonatal rat. Endocrinology. 1978; 102: 582–588
  • Riber A B, Nielsen B L, Ritz C, Forkman B. Diurnal activity cycles and synchrony in layer hen chicks (Gallus gallus domesticus). Appl. Anim. Behav. Sci. 2007; 108: 276–287
  • Richard‐Yris M A. Comportement parental chez les gallinacés: Importance du facteur émotivité dans la vitesse d'émergence des réponses parentales. Apports du modèle caille japonaise. Comportement et bien-être animalINRA, M Picard, R H Porter, J P Signoret. Plenum Press, ParisFrance 1994; 61–76
  • Richard‐Yris M A, Michel N, Bertin A. Nongenomic inheritance of emotional reactivity in Japanese quail. Dev. Psychobiol. 2005; 46: 1–12
  • Roden C, Wechsler B. A comparison of the behaviour of domestic chicks reared with or without a hen in enriched pens. Appl. Anim. Behav. Sci. 1998; 55: 317–326
  • Rudeen P K, Creighton J, Bylund D B, Petterbourg L J, Paredez S. Ontogeny of light‐induced decrease of N‐acetyltransferase activity in explanted chick pineal glands. J. Pineal Res. 1990; 8: 153–158
  • Sachs B D. Photoperiodic control of reproductive behavior and physiology of reproductive behavior and physiology of the male Japanese quail. Horm. Behav. 1969; 1: 7–24
  • Sasaki Y, Murakami N, Takahashi K. Critical period for the entrainment of the circadian rhythm in blinded pups by dams. Physiol. Behav. 1984; 33: 105–109
  • Siegel S, Castellan N J, Jr. Nonparametric statistics for the behavioral sciences2. McGraw‐Hill, Inc., USA 1988; 103–111
  • Szyf M, Weaver I, Meaney M. Maternal care, the epigenome and phenotypic differences in behavior. Reprod. Toxicol. 2007; 24: 9–19
  • Underwood H, Siopes T. Circadian organization in Japanese quail. J. Exp. Zool. 1984; 232: 557–567
  • Underwood H, Steele C T, Zivkovic B. Circadian organization and the role of the pineal in birds. Microscopy Res. Tech. 2001; 58: 48–62
  • Van't Hof T, Gwinner E. Development of post‐hatching melatonin rhythm in zebra finches (Peophila guttata). Experientia 1996; 52: 249–252
  • Viswanathan N. Maternal entrainment in the circadian activity rhythm of laboratory mouse (C57BL/6J). Physiol. Behav. 1999; 68: 157–162
  • Viswanathan N, Chandrashekaran M K. Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature 1985; 317: 530–531
  • Wauters A M, Perré Y, Bizeray D, Leterrier C, Richard‐Yris M A. Mothering influences the distribution of activity in young domestic chicks. Chronobiol. Int. 2002; 19: 543–559
  • Weaver I C. Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: Let's call the whole thing off. Epigenetics 2007; 2: 22–28
  • Weaver I, Cervoni N, Champagne F A, D'Alessio A C, Sharma S, Seckl J R, Dymov S, Szyf M, Meaney M J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004; 7: 791–792
  • Weaver I C, Meaney M J, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety‐mediated behaviors in the offspring that are reversible in adulthood. Proc. Natl. Acad. Sci. USA 2006; 103: 3480–3485
  • Yoshimura T, Suzuki Y, Makino E, Suzuki T, Kuroiwa A, Matsuda Y, Namikawa T, Ebihara S. Molecular analysis of avian circadian clock genes. Mol. Brain. Res. 2000; 78: 207–215
  • Zeman M, Gwinner E. Ontogeny of the rhythmic melatonin production in a precocial and an altricial bird, the Japanese quail and the European starling. J. Comp. Physiol. 1993; 172: 333–338
  • Zeman M, Illnerova H. Ontogeny of N‐acetyltransferase activity rhythm in pineal gland of chick embryo. Comp. Biochem. Physiol. A. 1990; 97: 175–178
  • Zeman M, Gwinner E, Somogyiova E. Development of melatonin rhythm in the pineal gland and eyes of chick embryo. Experientia 1992; 48: 765–768
  • Zeman M, Gwinner E, Herichova I, Lamosova D, Kost'al L. Perinatal development of circadian melatonin production in domestic chicks. J. Pineal Res. 1999; 26: 28–34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.