Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 33, 2016 - Issue 8
280
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Role and expression of cry1 in the adductor muscle of the oyster Crassostrea gigas during daily and tidal valve activity rhythms

, , &

References

  • Barnwell FH. (1966). Daily and tidal patterns of activity in individual fiddler crab (Genus Uca) from the Woods Hole Region. Biol Bull. 130:1–17.
  • Bell-Pedersen D, Cassone VM, Earnest DJ, et al. (2005). Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat Rev Genet. 6:544–556.
  • Bingham C, Arbogast B, Cornélissen G, Lee JK, Halberg F. (1982). Inferential statistical methods for estimating and comparing Cosinor parameters. Chronobiologia. 9:397–439.
  • Box GEP, Jenkins GM, Reinsel GC. (1994). Time series analysis: Forecasting and control. 3rd ed. New York, NY: Prentice Hall, 598.
  • Bravo I, Vila M, Maso M, et al. (2008). Alexandrium catenella and Alexandrium minutum blooms in the Mediterranean Sea: Toward the identification of ecological niches. Harmful Algae. 7:515–522.
  • Bricelj VM, Shumway SE. (1998). Paralytic shellfish toxins in bivalve molluscs: Occurrence, transfer kinetics, and biotransformation. Rev Fish Sci. 6:315–383.
  • Cashmore AR. (2003). Cryptochromes: Enabling plants and animals to determine circadian time. Cell. 114:537–543.
  • Ceriani MF, Darlington TK, Staknis D, et al. (1999). Light-dependent sequestration of timeless by cryptochrome. Science. 285:553–556.
  • Chaves I, Pokorny R, Byrdin M, et al. (2011). The cryptochromes: Blue light photoreceptors in plants and animals. Annu Rev Plant Biol. 62:335–364.
  • Connor KM, Gracey AY. (2011). Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel Mytilus californianus. Proc Natl Acad Sci USA. 108:16110–16115.
  • Dowse HB, Ringo JM, Power J, et al. (1995). A congenital heart defect in Drosophila caused by an action potential mutation. J Neurogenet. 10:153–168.
  • Emery P, So WV, Kaneko M, et al. (1998). CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 95:669–679.
  • Enright JT. (1976). Plasticity in an isopod’s clockworks: Shaking shapes form and affects phase and frequency. J Comp Physiol. 107:13–37.
  • Fabioux C, Corporeau C, Quillien V, et al. (2009). In vivo RNA interference in oyster - vasa silencing inhibits germ cell development. FEBS J. 276(9):2566–2573.
  • Fedele G, Green EW, Rosato E, Kyriacou CP. (2014). An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat Commun. 5:4391–4395.
  • Fogle KJ, PArson KG, Dahm NA, Holmes TC. (2011). CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science. 331:1409–1413.
  • Galimany E, Sunila I, Hégaret H, et al. (2008). Experimental exposure of the blue mussel (Mytilus edulis, L.) to the toxic dinoflagellate Alexandrium fundyense: Histopathology, immune responses, and recovery. Harmful Algae. 7:702–711.
  • Galler S. (2008). Molecular basis of the catch state in molluscan smooth muscles: A catchy challenge. J Muscle Res Cell Motil. 29:73–99.
  • Galtsoff PS. (1964). The American oyster Crassostrea virginica Gmelin. Fishery Bull Fish Wildl. Serv US. 64:1–480.
  • Gegear RJ, Foley LE, Casselman A, Reppert SM. (2010). Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature. 463:804–808.
  • Gibson RN. (1973). Tidal and circadian activity rhythms in juvenile plaice, Pleuronectes platessa. Mar Biol. 22:379–386.
  • Gouthière L, Mauvieux B, Davenne D, Waterhouse J. (2005). Complementary methodology in the analysis of rhythmic data, using examples from a complex situation, the rhythmicity of temperature in night shift workers. Biol Rhythm Res. 36:177–193.
  • Gracey AY, Chaney ML, Boomhower JP, et al. (2008). Rhythms of gene expression in a fluctuating intertidal environment. Curr Biol. 18:1501–1507.
  • Guillard RRL. (1975). Culture of phytoplankton for feeding marine invertebrates. In Smith WL and Chanley MH, eds. Culture of marine invertebrates animals. New York: Plenum Press, pp. 29–60.
  • Haberkorn H, Lambert C, Le Goïc N, et al. (2010b). Effects of Alexandrium minutum exposure upon physiological and hematological variables of diploid and triploid oysters, Crassostrea gigas. Aquatic Toxicol. 97:96–108.
  • Haberkorn H, Lambert C, Le Goïc N, et al. (2010a). Effects of Alexandrium minutum exposure on nutrition-related processes and reproductive output in oysters Crassostrea gigas. Harmful Algae. 9:427–439.
  • Haberkorn H, Tran D, Massabuau JC, et al. (2011). Relationship between valve activity, microalgae concentration in the water and toxin accumulation in the digestive gland of the Pacific oyster Crassotrea gigas exposed to Alexandrium minutum. Mar Pollut Bull. 62:1191–1197.
  • Halberg F. (1969). Chronobiology. Annu Rev Physiol. 31:675–725.
  • Hallegraeff GM, Anderson DM, Cembella AD. (2003). Manual on harmful marine microalgae, monographs on oceanographic methodology. Paris: UNESCO, 11S. pp. 793.
  • Hégaret H, Wikfors GH, Soudant P, et al. (2007). Toxic dinoflagellates (Alexandrium fundyense and A. catenella) have minimal apparent effects on oyster hemocytes. Mar Biol. 152:441–447.
  • Hoyle G. (1964). Muscle and neuromuscular physiology. In Wilbur KM, Yonge CM, eds. Physiology of Mollusca, Vol 1. New York and London: Academic Press. pp. 313–351.
  • Huvet A, Fleury E, Corporeau C, et al. (2012). In vivo RNA interference of a gonad-specific transforming growth factor-β in the Pacific oyster Crassostrea gigas. Mar Biotechnol. 14(4):402–410.
  • Jenkins GM, Watts DG. (1968). Spectral analysis and its applications. San Francisco: Holden Day. Pp 525.
  • Kaneko M, Hernandez-Borsetti N, Cahill GM. (2006). Diversity of zebrafish peripheral oscillators revealed by luciferase reporting. Proc Natl Acad Sci USA. 103(39):14614–14619.
  • Krishnan B, Levine JD, Lynch MKS, et al. (2001). A new role for cryptochrome in a Drosophila circadian oscillator. Nature. 411:313–317.
  • Lassus P, Bardouil M, Beliaeff B, et al. (1999). Effect of a continuous supply of the toxic dinoflagellate Alexandrium minutum Halim on the feeding behavior of the pacific oyster (Crassostrea gigas Thunberg). J Shellfish Res. 18:211–216.
  • Last KS, Bailhache T, Kramer C, et al. (2009). Chronobiol Int. 26:167–183.
  • Levy O, Appelbaum L, Leggat W, et al. (2007). Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science. 318:467–470.
  • Lin C, Todo T. (2005). The cryptochromes. Genome Biol. 6:220.1–220.9
  • Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCt method. Methods. 25:402–408.
  • Lucas RJ, Foster RG. (1999). Circadian clocks: A cry in the dark? Curr Biol. 9:R825–R828.
  • Maeda K, Robinson AJ, Henbest KB, et al. (2012). Magnetically sensitive light-induced reactions in cryptochrome are consistent with ist proposed role as a magnetoreceptor. Proc Natl Acad. Sci USA. 109:4774–4779.
  • Massabuau JC, Forgue J. (1996). A field versus laboratory study of blood oxygen status in normoxic crabs at different temperatures. Can J Zool. 74:423–430.
  • Mat AM, Haberkorn H, Bourdineaud JP, et al. (2013). Genetic and genotoxic impacts in the oyster Crassostrea gigas exposed to the harmful alga Alexandrium minutum. Aquatic Toxicol. 140–141: 458-465.
  • Mat AM, Massabuau JC, Ciret P, Tran D. (2012). Evidence for a plastic dual circadian rhythm in the oyster Crassostrea gigas. Chronobiol Int. 29:857–867.
  • Mat AM, Massabuau JC, Ciret P, Tran D. (2014). Looking for the clock mechanism responsible for circatidal behavior in the oyster Crassostrea gigas. Mar Biol. 161:89–99.
  • Narahashi T, Moore JW. (1968). Neuroactive agents and nerve membrane conductances. J Gen Physiol. 51:93–101.
  • Navarro JM, Contreras AM. (2010). An integrative response by Mytilus chilensis to the toxic dinoflagellate Alexandrium catenella. Mar Biol. 157: 1967–1974.
  • Naylor E. (2010). Chronobiology of marine organisms. Cambridge, UK: Cambridge University Press. pp. 242.
  • Nelson W, Tong YL, Lee JK, Halberg F. (1979). Methods for Cosinor-rhythmometry. Chronobiologia. 6:305–323.
  • Noguchi T, Watanabe K. (2005). Tetrodotoxin resets the clock. Eur J Neurosci. 21:3361–3367.
  • Oliveri P, Fortunato AE, Petrone L, et al. (2014). The cryptochrome/photolyase family in aquatic organisms. Marine Genomics. 14:23–37.
  • Ouyang Y, Andersson CR, Kondos T, et al. (1998). Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA. 95:8660–8664.
  • Pitcher GC, Cembella AD, Joyce LB, et al. (2007). The dinoflagellate Alexandrium minutum in Cape Town harbour (South Africa): Bloom characteristics, phylogenetic analysis and toxin composition. Harmful Algae. 6:823–836.
  • Pittendrigh CS. (1993). Temporal organization: Reflections of a Darwinian clock-watcher. Annu Rev Physiol. 55:17–54.
  • Saigusa M. (1992). Phase shift of a tidal rhythm by light-dark cycles in the semi-terrestrial crab Sesarma pictum. Biol Bull. 182:257–264.
  • Scargle JD. (1982). Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J. 263:835–853.
  • Schwartz WJ, Gross RA, Morton MT. (1987). The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci USA. 84:1694–1698.
  • Scotto-Lavino E, Du G, Frohman MA. (2007a). 5’ end cDNA amplification using classic RACE. Nat Protoc. 1(6):2555–2562.
  • Scotto-Lavino E, Du G, Frohman MA. (2007b). 3’ end cDNA amplification using classic RACE. Nat Protoc. 1(6):2742–2745.
  • Tessmar-Raible K, Raible F, Arboleda E. (2011). Another place, another timer: Marine species and the rhythms of life. Bioessays. 33:165–172.
  • Toma DP, White KP, Hirsch J, Greenspan RJ. (2002). Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat Genet. 31:349–353.
  • Tran D, Ciret P, Ciutat A, et al. (2003). Estimation of potential and limits of bivalve closure response to detect contaminants: Application to cadmium. Environ Toxicol Chem. 22:116–122.
  • Tran D, Haberkorn H, Soudant P, et al. (2010). Behavioral repsonses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum. Aquaculture. 298:338–345.
  • Tran D, Nadau A, Durrieu G, et al. (2011). Field chronobiology of a molluscan bivalve: How the moon and sun cycles interact to drive oyster activity rhythms. Chronobiol Int. 28:307–317.
  • Tran D, Ciutat A, Mat A, et al. (2015). The toxic dinoflagellate Alexandrium minutum disrupts daily rhythmic activities at gene transcription, physiological and behavioral levels in the oyster Crassostrea gigas. Aquatic Toxicol. 158:41–49.
  • Wildish D, Lassus P, Martin J, et al. (1998). Effect of the PSP-causing dinoflagellate, Alexandrium sp. on the initial feeding response of Crassotrea gigas. Aquat Living Resour. 11:35–43.
  • Yamaguchi S, Isejima H, Matsuo T, et al. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science. 302:1408–1412.
  • Yan T, Zhou M, Fu M, et al. (2001). Inhibition of egg hatching success and larvae survival of the scallop, Chlamys farreri, associated with exposure to cells and cell fragments of the dinoflagellate A. tamarense. Toxicon. 39:1239–1244.
  • Yerushalmi S, Green RM. (2009). Evidence for the adaptive significance of circadian rhythms. Ecol Lett 12:970–981.
  • Yuan Q, Metterville D, Briscoe AD, Reppert SM. (2007). Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol. 24(4):948–955.
  • Zankte J, Ishikawa-Fujiwara T, Arboleda E, et al. (2013). Circadian and circalunar clock interactions in a marine annelid. Cell Rep. 5:99–113.
  • Zhang EE, Kay SA. (2010). Clocks not winding down: Unravelling circadian networks. Nat Rev Mol Cell Biol. 11:764–776.
  • Zhang G, Fang X, Guo X, et al. (2012). The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 490:49–54.
  • Zhang L, Hastings MH, Green EW, et al. (2013). Dissociation of circadian and circatidak timekeeping in the marine crustacean Eurydice pulchra. Curr Biol. 23(19):1863–1873.
  • Zhu H, Yuan Q, Froy O, et al. (2005). The two CRYs of the butterfly. Curr Biol. 15(23):R953–R954.
  • Zhu H, Sauman I, Yuan Q, et al. (2008). Cryptochromes define novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. Plos Biol. 6(1): e4. doi:10.1371/journal.pbio.0060004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.