Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 35, 2018 - Issue 5
397
Views
9
CrossRef citations to date
0
Altmetric
Short Communication

Bmal1-deficient mouse fibroblast cells do not provide premature cellular senescence in vitro

ORCID Icon, , , , &
Pages 730-738 | Received 12 Nov 2017, Accepted 16 Jan 2018, Published online: 26 Jan 2018

References

  • Baar MP, Brandt RM, Putavet DA, Klein JD, Derks KW, Bourgeois BR, Stryeck S, Rijksen Y, Van Willigenburg H, Feijtel DA, et al. 2017. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 169:132–147e116.
  • Baeza-Raja B, Eckel-Mahan K, Zhang L, Vagena E, Tsigelny IF, Sassone-Corsi P, Ptacek LJ, Akassoglou K. 2013. p75 neurotrophin receptor is a clock gene that regulates oscillatory components of circadian and metabolic networks. J Neuroscience: Official Journal Soc Neurosci. 33:10221–34.
  • Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, et al. 2016. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 530:184–89.
  • Bhatia-Dey N, Kanherkar RR, Stair SE, Makarev EO, Csoka AB. 2016. Cellular senescence as the causal nexus of aging. Front Genet. 7:13.
  • Borgs L, Beukelaers P, Vandenbosch R, Nguyen L, Moonen G, Maquet P, Albrecht U, Belachew S, Malgrange B. 2009. Period 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus. BMC Neurosci. 10:30.
  • Bouchard-Cannon P, Mendoza-Viveros L, Yuen A, Kaern M, Cheng HY. 2013. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit. Cell Rep. 5:961–73.
  • Brown SA, Kowalska E, Dallmann R. 2012. (Re)inventing the circadian feedback loop. Dev Cell. 22:477–87.
  • Cannavino J, Brocca L, Sandri M, Bottinelli R, Pellegrino MA. 2014. PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice. J Physiol. 592:4575–89.
  • Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, et al. 2016. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 22:78–83.
  • Chen M, Pereira-Smith OM, Tominaga K. 2011. Loss of the chromatin regulator MRG15 limits neural stem/progenitor cell proliferation via increased expression of the p21 Cdk inhibitor. Stem Cell Res. 7:75–88.
  • Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. 2009. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 4:1798–806.
  • Hashimoto M, Asai A, Kawagishi H, Mikawa R, Iwashita Y, Kanayama K, Sugimoto K, Sato T, Maruyama M, Sugimoto M. 2016. Elimination of p19ARF-expressing cells enhances pulmonary function in mice. JCI Insight. 1:e87732.
  • Hayflick L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 37:614–36.
  • Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp Cell Res. 25:585–621.
  • Kensler TW, Wakabayashi N, Biswal S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 47:89–116.
  • Khaidizar FD, Nakahata Y, Kume A, Sumizawa K, Kohno K, Matsui T, Bessho Y. 2017. Nicotinamide phosphoribosyltransferase delays cellular senescence by upregulating SIRT1 activity and antioxidant gene expression in mouse cells. Genes to Cells. 22:982–92.
  • Khapre RV, Kondratova AA, Patel S, Dubrovsky Y, Wrobel M, Antoch MP, Kondratov RV. 2014. BMAL1‐dependent regulation of the mTOR signaling pathway delays aging. Aging. 6:48–57.
  • Khapre RV, Kondratova AA, Susova O, Kondratov RV. 2011. Circadian clock protein BMAL1 regulates cellular senescence in vivo. Cell Cycle. 10:4162–69.
  • Kohsaka A, Das P, Hashimoto I, Nakao T, Deguchi Y, Gouraud SS, Waki H, Muragaki Y, Maeda M. 2014. The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice. PLoS One. 9:e112811.
  • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. 2006. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20:1868–73.
  • Kondratov RV, Vykhovanets O, Kondratova AA, Antoch MP. 2009. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging. 1:979–87.
  • Kondratova AA, Dubrovsky YV, Antoch MP, Kondratov RV. 2010. Circadian clock proteins control adaptation to novel environment and memory formation. Aging. 2:285–97.
  • Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE. 2004. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114:1299–307.
  • Lee J, Moulik M, Fang Z, Saha P, Zou F, Xu Y, Nelson DL, Ma K, Moore DD, Yechoor VK. 2013. Bmal1 and beta-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced beta-cell failure in mice. Mol Cell Biol. 33:2327–38.
  • Liu J, Huang K, Cai GY, Chen XM, Yang JR, Lin LR, Yang J, Huo BG, Zhan J, He YN. 2014. Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell Signal. 26:110–21.
  • Liu J, Yang JR, Chen XM, Cai GY, Lin LR, He YN. 2015. Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy. Am J Physiol Cell Physiol. 308:C621–630.
  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell. 153:1194–217.
  • Malik A, Kondratov RV, Jamasbi RJ, Geusz ME. 2015. Circadian clock genes are essential for normal adult neurogenesis, differentiation, and fate determination. PLoS One. 10:e0139655.
  • Nakahata Y, Bessho Y. 2016. The circadian NAD+ metabolism: Impact on chromatin remodeling and aging. Biomed Res Int. 2016:1–7.
  • Pando MP, Morse D, Cermakian N, Sassone-Corsi P. 2002. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell. 110:107–17.
  • Pekovic-Vaughan V, Gibbs J, Yoshitane H, Yang N, Pathiranage D, Guo B, Sagami A, Taguchi K, Bechtold D, Loudon A, et al. 2014. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes Dev. 28:548–60.
  • Pluquet O, Pourtier A, Abbadie C. 2015. The unfolded protein response and cellular senescence. A review in the theme: Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am J Physiol Cell Physiol. 308:C415–425.
  • Reppert SM, Weaver DR. 2002. Coordination of circadian timing in mammals. Nature. 418:935–41.
  • Rodier F, Campisi J. 2011. Four faces of cellular senescence. J Cell Biol. 192:547–56.
  • Sahar S, Sassone-Corsi P. 2012. Regulation of metabolism: The circadian clock dictates the time. Trends Endocrinol Metab: TEM. 23:1–8.
  • Salminen A, Kaarniranta K. 2010. ER stress and hormetic regulation of the aging process. Ageing Res Rev. 9:211–17.
  • Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, Oberg AL, Birch J, Salmonowicz H, Zhu Y, et al. 2017. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 8:14532.
  • Schnell A, Chappuis S, Schmutz I, Brai E, Ripperger JA, Schaad O, Welzl H, Descombes P, Alberi L, Albrecht U. 2014. The nuclear receptor REV-ERBalpha regulates Fabp7 and modulates adult hippocampal neurogenesis. PLoS One. 9:e99883.
  • Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, Tezuka M, Kosuge Y, Ishige K, Ito Y, et al. 2011. Deficient of a clock gene, brain and muscle arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One. 6:e25231.
  • Stein GH, Drullinger LF, Soulard A, Dulić V. 1999. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol. 19:2109–17.
  • Takahashi JS. 2015. Molecular components of the circadian clock in mammals. Diabetes Obes Metab. 17(Suppl 1):6–11.
  • Tsuru A, Imai Y, Saito M, Kohno K. 2016. Novel mechanism of enhancing IRE1alpha-XBP1 signalling via the PERK-ATF4 pathway. Sci Rep. 6:24217.
  • Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. 2004. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol. 5:18.
  • Yang G, Chen L, Grant GR, Paschos G, Song WL, Musiek ES, Lee V, McLoughlin SC, Grosser T, Cotsarelis G, et al. 2016. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med. 8:16–28.
  • Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R, et al. 2016. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 7:11190.
  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.