Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 38, 2021 - Issue 9
712
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Post-transcriptional modulators and mediators of the circadian clock

ORCID Icon & ORCID Icon
Pages 1244-1261 | Received 02 Mar 2021, Accepted 03 May 2021, Published online: 31 May 2021

References

  • Allada R, Chung BY. 2010. Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol. 72:605–624. doi:10.1146/annurev-physiol-021909-135815
  • Allada R, Emery P, Takahashi JS, Rosbash M. 2001. Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci. 24(1):1091–1119. doi:10.1146/annurev.neuro.24.1.1091
  • Allada R, White NE, So WV, Hall JC, Rosbash M. 1998. A mutant drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell. 93(5):791–804. doi:10.1016/S0092-8674(00)81440-3
  • Alvarez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, Sonenberg N, Cheng H-YM. 2011. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet. 20(4):731–751. doi:10.1093/hmg/ddq519
  • Araki R, Takahashi H, Fukumura R, Sun F, Umeda N, Sujino M, Inouye ST, Saito T, Abe M. 2004. Restricted expression and photic induction of a novel mouse regulatory factor X4 transcript in the suprachiasmatic nucleus. J Biol Chem. 279:10237–10242. doi:10.1074/jbc.M312761200
  • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. 2010. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell. 142(6):943–953. doi:10.1016/j.cell.2010.08.016
  • Avitabile D, Genovese L, Ponti D, Ranieri D, Raffa S, Calogero A, Torrisi MR. 2014. Nucleolar localization and circadian regulation of Per2S, a novel splicing variant of the period 2 gene. Cell Mol Life Sci. 71(13):2547–2559. doi:10.1007/s00018-013-1503-1
  • Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, Tavakkolizadeh A. 2010. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res. 316(20):3512–3521. doi:10.1016/j.yexcr.2010.07.007
  • Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116(2):281–297. doi:10.1016/S0092-8674(04)00045-5
  • Benito J, Zheng H, Ng FS, Hardin PE. 2007. Transcriptional feedback loop regulation, function, and ontogeny in Drosophila. Cold Spring Harb Symp Quant Biol. 72(1):437–444. doi:10.1101/sqb.2007.72.009
  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. 2000. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 103(7):1009–1017. doi:10.1016/S0092-8674(00)00205-1
  • Chen R, D’Alessandro M, Lee C. 2013. miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol. 23(20):1959–1968. doi:10.1016/j.cub.2013.08.005
  • Chen W, Liu Z, Li T, Zhang R, Xue Y, Zhong Y, Bai W, Zhou D, Zhao Z. 2014. Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nat Commun. 5(1):5549. doi:10.1038/ncomms6549
  • Chen X, Rosbash M. 2016. mir-276a strengthens Drosophila circadian rhythms by regulating timeless expression. Proc Natl Acad Sci USA. 113(21):E2965–2972. doi:10.1073/pnas.1605837113
  • Chen X, Rosbash M. 2017. MicroRNA-92a is a circadian modulator of neuronal excitability in Drosophila. Nat Commun. 8:14707. doi:10.1038/ncomms14707
  • Cheng H-YM, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, et al. 2007. microRNA modulation of circadian-clock period and entrainment. Neuron. 54(5):813–829. doi:10.1016/j.neuron.2007.05.017
  • Collins BH, Rosato E, Kyriacou CP. 2004. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc Natl Acad Sci USA. 101(7):1945–1950. doi:10.1073/pnas.0308240100
  • Cusumano P, Biscontin A, Sandrelli F, Mazzotta GM, Tregnago C, De Pittà C, Costa R. 2018. Modulation of miR-210 alters phasing of circadian locomotor activity and impairs projections of PDF clock neurons in Drosophila melanogaster. PLOS Genet. 14(7):e1007500. doi:10.1371/journal.pgen.1007500
  • Cyran SA, Buchsbaum AM, Reddy KL, Lin M-C, Glossop NRJ, Hardin PE, Young MW, Storti RV, Blau J. 2003. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell. 112(3):329–341. doi:10.1016/S0092-8674(03)00074-6
  • Cyran SA, Yiannoulos G, Buchsbaum AM, Saez L, Young MW, Blau J. 2005. The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J Neurosci. 25(22):5430–5437. doi:10.1523/JNEUROSCI.0263-05.2005
  • Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TDL, Weitz CJ, Takahashi JS, Kay SA. 1998. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. 280:6. doi:10.1126/science.280.5369.1599
  • Davis CJ, Bohnet SG, Meyerson JM, Krueger JM. 2007. Sleep loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett. 422(1):68–73. doi:10.1016/j.neulet.2007.06.005
  • Dolezelova E, Dolezel D, Hall JC. 2007. Rhythm defects caused by newly engineered null mutations in Drosophila’s cryptochrome gene. Genetics. 177(1):329–345. doi:10.1534/genetics.107.076513
  • Dubruille R, Emery P. 2008. A plastic clock: how circadian rhythms respond to environmental cues in Drosophila. Mol Neurobiol. 38(2):129–145. doi:10.1007/s12035-008-8035-y
  • Fernández MP, Berni J, Ceriani MF. 2008. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol. 6(3):e69. doi:10.1371/journal.pbio.0060069
  • Foley Lauren E, Ling J, Joshi R, Evantal N, Kadener S, Emery P. 2019. Drosophila PSI controls circadian period and the phase of circadian behavior under temperature cycle via tim splicing. Elife. 8. doi:10.7554/eLife.50063
  • Fustin J-M, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, et al. 2013. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 155(4):793–806. doi:10.1016/j.cell.2013.10.026
  • Gao C, Qiang S, Wei J, Zhou W, Xiao K, Wang J, Shi Q, Dong X-P. 2018. The associations of two SNPs in miRNA-146a and one SNP in ZBTB38-RASA2 with the disease susceptibility and the clinical features of the Chinese patients of sCJD and FFI. Prion. 12(1):34–41. doi:10.1080/19336896.2017.1405885
  • Gao Q, Zhou L, Yang S-Y, Cao J-M. 2016. A novel role of microRNA 17-5p in the modulation of circadian rhythm. Sci Rep. 6(1):30070. doi:10.1038/srep30070
  • Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeepaa A-L, Oresic M, Esau CC, Zdobnov EM, et al. 2009. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 23(11):1313–1326. doi:10.1101/gad.1781009
  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 280(5369):1564–1569. doi:10.1126/science.280.5369.1564
  • Gibo S, Kurosawa G. 2020. Theoretical study on the regulation of circadian rhythms by RNA methylation. J Theor Biol. 490:110140. doi:10.1016/j.jtbi.2019.110140
  • Glossop NRJ, Houl JH, Zheng H, Ng FS, Dudek SM, Hardin PE. 2003. VRILLE feeds back to control circadian transcription of clock in the Drosophila circadian oscillator. Neuron. 37(2):249–261. doi:10.1016/S0896-6273(03)00002-3
  • Green CB. 2018. Circadian posttranscriptional regulatory mechanisms in mammals. Cold Spring Harb Perspect Biol. 10(6):a030692. doi:10.1101/cshperspect.a030692
  • Green CB, Douris N, Kojima S, Strayer CA, Fogerty J, Lourim D, Keller SR, Besharse JC. 2007. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci USA. 104(23):9888–9893. doi:10.1073/pnas.0702448104
  • Griffin EA Jr. 1999. Light-independent role of CRY1 and CRY2 in the mammalian circadian Clock. Science. 286(5440):768–771. doi:10.1126/science.286.5440.768
  • Grima B, Papin C, Martin B, Chélot E, Ponien P, Jacquet E, Rouyer F. 2019. PERIOD-controlled deadenylation of the timeless transcript in the Drosophila circadian clock. Proc Natl Acad Sci USA. 116(12):5721–5726. doi:10.1073/pnas.1814418116
  • Guillaumond F, Dardente H, Giguère V, Cermakian N. 2005. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms. 20(5):391–403. doi:10.1177/0748730405277232
  • Guo F, Cerullo I, Chen X, Rosbash M. 2014. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila. Elife. 3. doi:10.7554/eLife.02780
  • Hardin PE. 2011. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet. 74:141–173. doi:10.1038/343536a0
  • Hardin PE, Hall JC, Rosbash M. 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 343(6258):536–540. doi:10.1038/343536a0
  • Helfrich-Förster C. 1997. Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J Comp Neurol. 380(3):335–354. doi:10.1002/(SICI)1096-9861(19970414)380:3<335::AID-CNE4>3.0.CO;2-3
  • Hijmans JG, Levy M, Garcia V, Lincenberg GM, Diehl KJ, Greiner JJ, Stauffer BL, DeSouza CA. 2019. Insufficient sleep is associated with a pro-atherogenic circulating microRNA signature. Exp Physiol. 104(6):975–982. doi:10.1113/EP087469
  • Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 450(7172):1086–1090. doi:10.1038/nature06394
  • Holm A, Bang-Berthelsen CH, Knudsen S, Kornum BR, Modvig S, Jennum P, Gammeltoft S. 2014. miRNA profiles in plasma from patients with sleep disorders reveal dysregulation of miRNAs in narcolepsy and other central hypersomnias. Sleep. 37(9):1525–1533. doi:10.5665/sleep.4004
  • Hong Z, Feng Z, Sai Z, Tao S. 2014. PER3, a novel target of miR-103, plays a suppressive role in colorectal cancer in vitro. BMB Rep. 47(9):500–505. doi:10.5483/BMBRep.2014.47.9.212
  • Hoss AG, Labadorf A, Latourelle JC, Kartha VK, Hadzi TC, Gusella JF, MacDonald ME, Chen J-F, Akbarian S, Weng Z, et al. 2015. miR-10b-5p expression in Huntington’s disease brain relates to age of onset and the extent of striatal involvement. BMC Med Genomics. 8:10. doi:10.1186/s12920-015-0083-3
  • Huang Y, Genova G, Roberts M, Jackson FR. 2007. The LARK RNA-binding protein selectively regulates the circadian eclosion rhythm by controlling E74 protein expression. PLoS ONE. 2(10):e1107. doi:10.1371/journal.pone.0001107
  • Huang Y, Howlett E, Stern M, Jackson FR. 2009. Altered LARK expression perturbs development and physiology of the Drosophila PDF clock neurons. Mol Cell Neurosci. 41(2):196–205. doi:10.1016/j.mcn.2009.02.013
  • Huang Z, Zhao X, Wu X, Xiang L, Yuan Y, Zhou S, Yu W. 2019. LncRNA UCA1 facilitated cell growth and invasion through the miR-206/CLOCK axis in glioma. Cancer Cell Int. 19:316. doi:10.1186/s12935-019-1023-7
  • Hurley JM, Loros JJ, Dunlap JC. 2016. Circadian oscillators: around the transcription–translation feedback loop and on to output. Trends Biochem Sci. 41(10):834–846. doi:10.1016/j.tibs.2016.07.009
  • Ivanova TN, Iuvone PM. 2003. Circadian rhythm and photic control of cAMP level in chick retinal cell cultures: a mechanism for coupling the circadian oscillator to the melatonin-synthesizing enzyme, arylalkylamine N-acetyltransferase, in photoreceptor cells. Brain Res. 991(1–2):96–103. doi:10.1016/j.brainres.2003.08.003
  • Jepson JEC, Shahidullah M, Lamaze A, Peterson D, Pan H, Koh K. 2012. dyschronic, a drosophila homolog of a deaf-blindness gene, regulates circadian output and slowpoke channels. PLoS Genet. 8(4):e1002671. doi:10.1371/journal.pgen.1002671
  • Jiang W, Zhao S, Shen J, Guo L, Sun Y, Zhu Y, Ma Z, Zhang X, Hu Y, Xiao W, et al. 2018. The MiR-135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis. 9(2):149. doi:10.1038/s41419-017-0233-y
  • Johnson CH, Elliott JA, Foster R. 2003. Entrainment of circadian programs. Chronobiol Int. 20(5):741–774. doi:10.1081/CBI-120024211
  • Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ. 2008. A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis. 29(3):438–445. doi:10.1016/j.nbd.2007.11.001
  • Kadener S, Menet JS, Sugino K, Horwich MD, Weissbein U, Nawathean P, Vagin VV, Zamore PD, Nelson SB, Rosbash M. 2009. A role for microRNAs in the Drosophila circadian clock. Genes Dev. 23(18):2179–2191. doi:10.1101/gad.1819509
  • Kadener S, Stoleru D, McDonald M, Nawathean P, Rosbash M. 2007. Clockwork orange is a transcriptional repressor and a new Drosophila circadian pacemaker component. Genes Dev. 21(13):1675–1686. doi:10.1101/gad.1552607
  • Kaneko M, Hall JC. 2000. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol. 422(1):66–94. doi:10.1002/(SICI)1096-9861(20000619)422:1<66::AID-CNE5>3.0.CO;2-2
  • Kaneko M, Helfrich-Förster C, Hall JC. 1997. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J Neurosci. 17(17):6745–6760. doi:10.1523/JNEUROSCI.17-17-06745.1997
  • Karabulut S, Korkmaz Bayramov K, Bayramov R, Ozdemir F, Topaloglu T, Ergen E, Yazgan K, Taskiran AS, Golgeli A. 2019. Effects of post-learning REM sleep deprivation on hippocampal plasticity-related genes and microRNA in mice. Behav Brain Res. 361:7–13. doi:10.1016/j.bbr.2018.12.045
  • Khalyfa A, Gaddameedhi S, Crooks E, Zhang C, Li Y, Qiao Z, Trzepizur W, Kay SA, Andrade J, Satterfield BC, et al. 2020. Circulating exosomal miRNAs signal circadian misalignment to peripheral metabolic tissues. Int J Mol Sci. 21:17. doi:10.3390/ijms21176396
  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, et al. 1997. Positional cloning of the mouse circadian clock gene. Cell. 89(4):641–653. doi:10.1016/S0092-8674(00)80245-7
  • Klarsfeld A. 2004. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J Neurosci. 24(6):1468–1477. doi:10.1523/JNEUROSCI.3661-03.2004
  • Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW. 1998. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell. 94(1):97–107. doi:10.1016/S0092-8674(00)81225-8
  • Kojima S, Gatfield D, Esau CC, Green CB. 2010. MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase nocturnin in mouse liver. PLoS ONE. 5(6):e11264. doi:10.1371/journal.pone.0011264
  • Kojima S, Matsumoto K, Hirose M, Shimada M, Nagano M, Shigeyoshi Y, Hoshino S-I, Ui-Tei K, Saigo K, Green CB, et al. 2007. LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1. Proc Natl Acad Sci USA. 104(6):1859–1864. doi:10.1073/pnas.0607567104
  • Kojima S, Sher-Chen EL, Green CB. 2012. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26(24):2724–2736. doi:10.1101/gad.208306.112
  • Kojima S, Shingle DL, Green CB. 2011. Post-transcriptional control of circadian rhythms. J Cell Sci. 124(3):311–320. doi:10.1242/jcs.065771
  • Konopka RJ, Benzer S. 1971. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci. 68(9):2112–2116. doi:10.1073/pnas.68.9.2112
  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 98(2):193–205. doi:10.1016/S0092-8674(00)81014-4
  • Lee C, Etchegaray J-P, Cagampang FRA, Loudon ASI, Reppert SM. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 107(7):855–867. doi:10.1016/S0092-8674(01)00610-9
  • Li S, Liu C, Li N, Hao T, Han T, Hill DE, Vidal M, Lin JD. 2008. Genome-wide coactivation analysis of PGC-1alpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab. 8(2):105–117. doi:10.1016/j.cmet.2008.06.013
  • Lim C, Chung BY, Pitman JL, McGill JJ, Pradhan S, Lee J, Keegan KP, Choe J, Allada R. 2007. clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila. Curr Biol. 17(12):1082–1089. doi:10.1016/j.cub.2007.05.039
  • Lim C, Lee J, Choi C, Kilman VL, Kim J, Park SM, Jang SK, Allada R, Choe J. 2011. The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature. 470(7334):399–403. doi:10.1038/nature09728
  • Lima SA, Chipman LB, Nicholson AL, Chen Y-H, Yee BA, Yeo GW, Coller J, Pasquinelli AE. 2017. Short poly(A) tails are a conserved feature of highly expressed genes. Nat Struct Mol Biol. 24(12):1057–1063. doi:10.1038/nsmb.3499
  • Liu Y, Hu W, Murakawa Y, Yin J, Wang G, Landthaler M, Yan J. 2013. Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Sci Rep. 3(1):2054. doi:10.1038/srep02054
  • Lowrey PL, Takahashi JS. 2004. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genom Hum Genet. 5(1):407–441. doi:10.1146/annurev.genom.5.061903.175925
  • Lowrey PL, Takahashi JS. 2011. Genetics of circadian rhythms in mammalian model organisms. Adv Genet. 74:175–230. doi:10.1016/B978-0-12-387690-4.00006-4
  • Luo W, Sehgal A. 2012. Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit. Cell. 148(4):765–779. doi:10.1016/j.cell.2011.12.024
  • Majercak J, Chen W-F, Edery I. 2004. Splicing of the period gene 3ʹ-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol Cell Biol. 24(8):3359–3372. doi:10.1128/MCB.24.8.3359-3372.2004
  • Majercak J, Sidote D, Hardin PE, Edery I. 1999. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron. 24(1):219–230. doi:10.1016/S0896-6273(00)80834-X
  • Martin Anduaga A, Evantal N, Patop IL, Bartok O, Weiss R, Kadener S. 2019. Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. Elife. 8. doi:10.7554/eLife.44642
  • Martinek S, Inonog S, Manoukian AS, Young MW. 2001. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell. 105(6):769–779. doi:10.1016/S0092-8674(01)00383-X
  • Matsumoto A, Ukai-Tadenuma M, Yamada RG, Houl J, Uno KD, Kasukawa T, Dauwalder B, Itoh TQ, Takahashi K, Ueda R, et al. 2007. A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev. 21(13):1687–1700. doi:10.1101/gad.1552207
  • Mehta N, Cheng H-YM. 2013. Micro-managing the circadian clock: the role of microRNAs in biological timekeeping. J Mol Biol. 425(19):3609–3624. doi:10.1016/j.jmb.2012.10.022
  • Meijer JH, Michel S, VanderLeest HT, Rohling JHT. 2010. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network: plasticity of the SCN neuronal network. Eur J Neurosci. 32(12):2143–2151. doi:10.1111/j.1460-9568.2010.07522.x
  • Mendoza-Viveros L, Chiang C-K, Ong JLK, Hegazi S, Cheng AH, Bouchard-Cannon P, Fana M, Lowden C, Zhang P, Bothorel B, et al. 2017. miR-132/212 modulates seasonal adaptation and dendritic morphology of the central circadian clock. Cell Rep. 19(3):505–520. doi:10.1016/j.celrep.2017.03.057
  • Miyazaki K, Nagase T, Mesaki M, Narukawa J, Ohara O, Ishida N. 2004. Phosphorylation of clock protein PER1 regulates its circadian degradation in normal human fibroblasts. Biochem J. 380(Pt 1):95–103. doi:10.1042/bj20031308
  • Morf J, Rey G, Schneider K, Stratmann M, Fujita J, Naef F, Schibler U. 2012. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science. 338(6105):379–383. doi:10.1126/science.1217726
  • Na YJ, Sung JH, Lee SC, Lee YJ, Choi YJ, Park WY, Shin HS, Kim JH. 2009. Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm. Exp Mol Med. 41(9):638. doi:10.3858/emm.2009.41.9.070
  • Nagel R, Clijsters L, Agami R. 2009. The miRNA-192/194 cluster regulates the period gene family and the circadian clock: regulation of the circadian clock by miR-192/194. FEBS J. 276(19):5447–5455. doi:10.1111/j.1742-4658.2009.07229.x
  • Naidoo N, Ferber M, Galante RJ, McShane B, Hu JH, Zimmerman J, Maislin G, Cater J, Wyner A, Worley P, et al. 2012. Role of homer proteins in the maintenance of sleep-wake states. PLoS ONE. 7(4):e35174. doi:10.1371/journal.pone.0035174
  • Newby LM, Jackson FR. 1996. Regulation of a specific circadian clock output pathway by lark, a putative RNA-binding protein with repressor activity. J Neurobiol. 31(1):117–128. doi:10.1002/(SICI)1097-4695(199609)31:1<117::AID-NEU10>3.0.CO;2-I
  • Ng FS, Jackson FR. 2015. The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior. Front Cell Neurosci. 9:256. doi:10.3389/fncel.2015.00256
  • Ng FS, Sengupta S, Huang Y, Yu AM, You S, Roberts MA, Iyer LK, Yang Y, Jackson FR. 2016. TRAP-seq profiling and RNAi-based genetic screens identify conserved glial genes required for adult Drosophila behavior. Front Mol Neurosci. 9:146. doi:10.3389/fnmol.2016.00146
  • Ng FS, Tangredi MM, Jackson FR. 2011. Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr Biol. 21(8):625–634. doi:10.1016/j.cub.2011.03.027
  • Nian X, Chen W, Bai W, Zhao Z. 2020. Regulation of circadian locomotor rhythm by miR-263a. Biol Rhythm Res. 1–11. doi:10.1080/09291016.2020.1726049
  • Nian X, Chen W, Bai W, Zhao Z, Zhang Y. 2019. miR-263b controls circadian behavior and the structural plasticity of pacemaker neurons by regulating the LIM-only protein beadex. Cells. 8(8):923. doi:10.3390/cells8080923
  • Niu Y, Liu Z, Nian X, Xu X, Zhang Y. 2019. miR-210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2.Taghert PH, editor. PLoS Genet. 15(7):e1007655. doi:10.1371/journal.pgen.1007655
  • Park I, Kim D, Kim J, Jang S, Choi M, Choe HK, Choe Y, Kim K. 2020. microRNA-25 as a novel modulator of circadian Period2 gene oscillation. Exp Mol Med. 52(9):1614–1626. doi:10.1038/s12276-020-00496-5
  • Pembroke WG, Babbs A, Davies KE, Ponting CP, Oliver PL. 2015. Temporal transcriptomics suggest that twin-peaking genes reset the clock. eLife. 4:e10518. doi:10.7554/eLife.10518
  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 110(2):251–260. doi:10.1016/S0092-8674(02)00825-5
  • Preußner M, Wilhelmi I, Schultz A-S, Finkernagel F, Michel M, Möröy T, Heyd F. 2014. Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol Cell. 54(4):651–662. doi:10.1016/j.molcel.2014.04.015
  • Quintero JE, Kuhlman SJ, McMahon DG. 2003. The biological clock nucleus: a multiphasic oscillator network regulated by light. J Neurosci. 23(22):8070–8076. doi:10.1523/JNEUROSCI.23-22-08070.2003
  • Reischl S, Kramer A. 2011. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett. 585(10):1393–1399. doi:10.1016/j.febslet.2011.02.038
  • Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC. 1998. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of drosophila period and timeless. Cell. 93(5):805–814. doi:10.1016/S0092-8674(00)81441-5
  • Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB. 2006. Feedback repression is required for mammalian circadian clock function. Nat Genet. 38(3):312–319. doi:10.1038/ng1745
  • Saus E, Soria V, Escaramís G, Vivarelli F, Crespo JM, Kagerbauer B, Menchón JM, Urretavizcaya M, Gratacòs M, Estivill X. 2010. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet. 19(20):4017–4025. doi:10.1093/hmg/ddq316
  • Schroeder AJ, Genova GK, Roberts MA, Kleyner Y, Suh J, Jackson FR. 2003. Cell-specific expression of the lark RNA-binding protein in Drosophila results in morphological and circadian behavioral phenotypes. J Neurogenet. 17(2–3):139–169. doi:10.1080/neg.17.2-3.139.169
  • Sehgal A, Price J, Man B, Young M. 1994. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science. 263(5153):1603–1606. doi:10.1126/science.8128246
  • Shafer OT, Helfrich-Förster C, Renn SCP, Taghert PH. 2006. Reevaluation of Drosophila melanogaster’s neuronal circadian pacemakers reveals new neuronal classes. J Comp Neurol. 498(2):180–193. doi:10.1002/cne.21021
  • Shafer OT, Kim DJ, Dunbar-Yaffe R, Nikolaev VO, Lohse MJ, Taghert PH. 2008. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron. 58(2):223–237. doi:10.1016/j.neuron.2008.02.018
  • Shakhmantsir I, Nayak S, Grant GR, Sehgal A. 2018. Spliceosome factors target timeless (tim) mRNA to control clock protein accumulation and circadian behavior in Drosophila. eLife. 7:e39821. doi:10.7554/eLife.39821
  • Shende VR, Goldrick MM, Ramani S, Earnest DJ. 2011. Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS ONE. 6(7):e22586. doi:10.1371/journal.pone.0022586
  • Shende VR, Kim S-M, Neuendorff N, Earnest DJ. 2014. MicroRNAs function as cis- and trans-acting modulators of peripheral circadian clocks. FEBS Lett. 588(17):3015–3022. doi:10.1016/j.febslet.2014.05.058
  • Shende VR, Neuendorff N, Earnest DJ. 2013. Role of miR-142-3p in the post-transcriptional regulation of the clock gene Bmal1 in the mouse SCN.Lyons LC, editor. PLoS ONE. 8(6):e65300. doi:10.1371/journal.pone.0065300
  • Shi L, Ko ML, Ko GY-P. 2009. Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel α1C subunit in chicken cone photoreceptors. J Biol Chem. 284(38):25791–25803. doi:10.1074/jbc.M109.033993
  • Shimizu K, Okada M, Takano A, Nagai K. 1999. SCOP, a novel gene product expressed in a circadian manner in rat suprachiasmatic nucleus. FEBS Lett. 458:363–369. doi:10.1016/S0014-5793(99)01190-4
  • Smith SS, Dole NS, Franceschetti T, Hrdlicka HC, Delany AM. 2016. MicroRNA-433 dampens glucocorticoid receptor signaling, impacting circadian rhythm and osteoblastic gene expression. J Biol Chem. 291(41):21717–21728. doi:10.1074/jbc.M116.737890
  • Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC. 1998. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 95(5):681–692. doi:10.1016/S0092-8674(00)81638-4
  • Stubblefield JJ, Gao P, Kilaru G, Mukadam B, Terrien J, Green CB. 2018. Temporal control of metabolic amplitude by nocturnin. Cell Rep. 22(5):1225–1235. doi:10.1016/j.celrep.2018.01.011
  • Swarbrick S, Wragg N, Ghosh S, Stolzing A. 2019. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol Neurobiol. 56(9):6156–6167. doi:10.1007/s12035-019-1500-y
  • Takahashi JS, Turek FW, Moore RY, editors.. 2001. Handbook of behavioral neurobiology: circadian clocks. Vol. 12. New York: Kluwer Acad./Plenum Publ.
  • Tan CL, Plotkin JL, Veno MT, Von Schimmelmann M, Feinberg P, Mann S, Handler A, Kjems J, Surmeier DJ, O’Carroll D, et al. 2013. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science. 342(6163):1254–1258. doi:10.1126/science.1244193
  • Tao S-C, Guo S-C. 2018. Extracellular vesicles: potential participants in circadian rhythm synchronization. Int J Biol Sci. 14(12):1610–1620. doi:10.7150/ijbs.26518
  • Temme C, Simonelig M, Wahle E. 2014. Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Front Genet. 5:143. doi:10.3389/fgene.2014.00143
  • Verma P, Augustine GJ, Ammar M-R, Tashiro A, Cohen SM. 2015. A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nat Neurosci. 18(3):379–385. doi:10.1038/nn.3935
  • Vodala S, Pescatore S, Rodriguez J, Buescher M, Chen Y-W, Weng R, Cohen SM, Rosbash M. 2012. The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs. Cell Metab. 16(5):601–612. doi:10.1016/j.cmet.2012.10.002
  • Wahl MC, Will CL, Lührmann R. 2009. The spliceosome: design principles of a dynamic RNP machine. Cell. 136(4):701–718. doi:10.1016/j.cell.2009.02.009
  • Wang C-Y, Yeh J-K, Shie -S-S, Hsieh I-C, Wen M-S. 2015. Circadian rhythm of RNA N6-methyladenosine and the role of cryptochrome. Biochem Biophys Res Commun. 465(1):88–94. doi:10.1016/j.bbrc.2015.07.135
  • Wang Q, Bozack SN, Yan Y, Boulton ME, Grant MB, Busik JV. 2014. Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina. Invest Ophthalmol Vis Sci. 55(6):3986–3994. doi:10.1167/iovs.13-13076
  • Wang Y, Osterbur DL, Megaw PL, Tosini G, Fukuhara C, Green CB, Besharse JC. 2001. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev Biol. 1:15. doi:10.1186/1471-213x-1-9
  • Watts ME, Williams SM, Nithianantharajah J, Claudianos C. 2018. Hypoxia-induced microRNA-210 targets neurodegenerative pathways. Noncoding RNA. 4(2). doi:10.3390/ncrna4020010
  • Weber F, Zorn D, Rademacher C, Hung H-C. 2011. Post-translational timing mechanisms of the Drosophila circadian clock. FEBS Lett. 585(10):1443–1449. doi:10.1016/j.febslet.2011.04.008
  • Weigelt CM, Hahn O, Arlt K, Gruhn M, Jahn AJ, Eßer J, Werner JA, Klein C, Büschges A, Grönke S, et al. 2019. Loss of miR-210 leads to progressive retinal degeneration in Drosophila melanogaster. Life Sci Alliance. 2(1):e201800149. doi:10.26508/lsa.201800149
  • Xia X, Fu X, Du J, Wu B, Zhao X, Zhu J, Zhao Z. 2020. Regulation of circadian rhythm and sleep by miR-375-timeless interaction in Drosophila. FASEB J. 34(12):16536–16551. doi:10.1096/fj.202001107R
  • Xue Q, Yu C, Wang Y, Liu L, Zhang K, Fang C, Liu F, Bian G, Song B, Yang A, et al. 2016. miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Sci Rep. 6:26781. doi:10.1038/srep26781
  • Xue Y, Zhang Y. 2018. Emerging roles for microRNA in the regulation of Drosophila circadian clock. BMC Neurosci. 19(1):1. doi:10.1186/s12868-018-0401-8
  • Yang M, Lee JE, Padgett RW, Edery I. 2008. Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics. 9(1):83. doi:10.1186/1471-2164-9-83
  • Yoo SH, Kojima S, Shimomura K, Koike N, Buhr ED, Furukawa T, Ko CH, Gloston G, Ayoub C, Nohara K, et al. 2017. Period2 3ʹ-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. Proc Natl Acad Sci USA. 114(42):E8855–E8864. doi:10.1073/pnas.1706611114
  • You S, Fulga TA, Van Vactor D, Jackson FR. 2018. Regulation of circadian behavior by astroglial MicroRNAs in Drosophila. Genetics. 208(3):1195–1207. doi:10.1534/genetics.117.300342
  • Yu W, Hardin PE. 2006. Circadian oscillators of Drosophila and mammals. J Cell Sci. 119(23):4793–4795. doi:10.1242/jcs.03174
  • Yuan P, Li J, Zhou F, Huang Q, Zhang J, Guo X, Lyu Z, Zhang H, Xing J. 2017. NPAS2 promotes cell survival of hepatocellular carcinoma by transactivating CDC25A. Cell Death Dis. 8(3):e2704. doi:10.1038/cddis.2017.131
  • Yuan P, Yang T, Mu J, Zhao J, Yang Y, Yan Z, Hou Y, Chen C, Xing J, Zhang H, et al. 2020. Circadian clock gene NPAS2 promotes reprogramming of glucose metabolism in hepatocellular carcinoma cells. Cancer Lett. 469:498–509. doi:10.1016/j.canlet.2019.11.024
  • Zhang Y, Lamba P, Guo P, Emery P. 2016. miR-124 regulates the phase of Drosophila circadian locomotor behavior. J Neurosci. 36(6):2007–2013. doi:10.1523/JNEUROSCI.3286-15.2016
  • Zhang Z, Cao W, Edery I. 2018. The SR protein B52/SRp55 regulates splicing of the period thermosensitive intron and mid-day siesta in Drosophila. Sci Rep. 8(1):1872. doi:10.1038/s41598-017-18167-3
  • Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, et al. 2001. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell. 105(5):683–694. doi:10.1016/S0092-8674(01)00380-4
  • Zhong X, Yu J, Frazier K, Weng X, Li Y, Cham CM, Dolan K, Zhu X, Hubert N, Tao Y, et al. 2018. Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation. Cell Rep. 25(7):1816–1828.e4. doi:10.1016/j.celrep.2018.10.068
  • Zhou L, Miller C, Miraglia LJ, Romero A, Mure LS, Panda S, Kay SA. 2021. A genome-wide microRNA screen identifies the microRNA-183/96/182 cluster as a modulator of circadian rhythms. Proc Natl Acad Sci USA. 118(1):e2020454118. doi:10.1073/pnas.2020454118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.