Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 39, 2022 - Issue 2
751
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

New integrative approaches to discovery of pathophysiological mechanisms triggered by night shift work

ORCID Icon, , , &
Pages 269-284 | Received 04 Apr 2021, Accepted 12 Oct 2021, Published online: 02 Nov 2021

References

  • Abeysena C, Jayawardana P, Seneviratne R. 2009. Maternal sleep deprivation is a risk factor for small for gestational age: a cohort study. Aust N Z J Obstet Gynaecol. 49(4):382–387. doi:https://doi.org/10.1111/j.1479-828X.2009.01010.x
  • Adams CD, Jordahl KM, Copeland W, Mirick DK, Song X, Sather CL, Kelsey K, Houseman A, Davis S, Randolph T, et al. 2017. Nightshift work, chronotype, and genome-wide DNA methylation in blood. Epigenetics. 12(10):833–840. doi:https://doi.org/10.1080/15592294.2017.1366407
  • Allada R, Bass J. 2021. Circadian Mechanisms in Medicine. N Engl J Med. 384:550–561.
  • Amaral FG, Castrucci AM, Cipolla-Neto J, Poletini MO, Mendez N, Richter HG, Sellix MT. 2014. Environmental Control of Biological Rhythms: Effects on Development, Fertility and Metabolism. J Neuroendocrinol. 26:603–612.
  • Archer SN, Laing EE, Möller-Levet CS, Van Der Veen DR, Bucca G, Lazar AS, Santhi N, Slak A, Kabiljo R, Von Schantz M, et al. 2014. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A. 111:E682–691.
  • Ardiles LG, Figueroa CD, Mezzano SA. 2003. Renal kallikrein-kinin system damage and salt sensitivity: Insights from experimental models. Kidney Int Suppl. 86:2–8.
  • Barclay JL, Husse J, Bode B, Naujokat N, Meyer-Kovac J, Schmid SM, Lehnert H, Oster H. 2012. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One. 7:e37150.
  • Bescos R, Boden MJ, Jackson ML, Trewin AJ, Marin EC, Levinger I, Garnham A, Hiam DS, Falcao-Tebas F, Conte F, et al. 2018. Four days of simulated shift work reduces insulin sensitivity in humans. Acta Physiol (Oxf). 223:e13039.
  • Bhatti P, Zhang Y, Song X, Makar KW, Sather CL, Kelsey KT, Houseman EA, Wang P. 2015. Nightshift work and genome-wide DNA methylation. Chronobiol Int. 32:103–112.
  • Borniger JC, Maurya SK, Periasamy M, Nelson RJ. 2014. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol Int. 8:917–925.
  • Bray MS, Ratcliffe WF, Grenett MH, Brewer RA, Gamble KL, Young ME. 2013. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int J Obes (Lond). 37:843–852.
  • Carmona P, Pérez B, Trujillo C, Espinosa G, Miranda F, Mendez N, Torres-Farfan C, Richter HG, Vergara K, Brebi P, et al. 2019. Long-term effects of altered photoperiod during pregnancy on liver gene expression of the progeny. Front Physiol. 10:1377.
  • Cederroth CR, Albrecht U, Bass J, Brown SA, Dyhrfjeld-Johnsen J, Gachon F, Green CB, Hastings MH, Helfrich-Förster C, Hogenesch JB, et al. 2019. Medicine in the Fourth Dimension. Cell Metab. 30:238–250.
  • Challet E. 2013. Circadian clocks, food intake, and metabolism. Prog Mol Biol Transl Sci. 119:105–135.
  • Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, Maywood ES, Stangherlin A, Chesham JE, Hayter EA, et al. 2019. insulin/igf-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell. 177:896–909.e20.
  • Croteau A, Marcoux S, Brisson C. 2006. Work activity in pregnancy, preventive measures, and the risk of delivering a small-for-gestational-age infant. Am J Public Health. 96:846–855.
  • Dauchy RT, Dauchy EM, Tirrell RP, Hill CR, Davidson LK, Greene MW, Tirrell PC, Wu J, Sauer LA, Blask DE. 2010. Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comp Med. 5:348–356.
  • De Goede P, Foppen E, Ritsema WIGR, Korpel NL, Yi CX, Kalsbeek A. 2019. Time-restricted feeding improves glucose tolerance in rats, but only when in line with the circadian timing system. Front Endocrinol (Lausanne). 10:554.
  • De Goede P, Hellings TP, Coopmans TV, Ritsema WIGR, Kalsbeek A. 2020. After-effects of time-restricted feeding on whole-body metabolism and gene expression in four different peripheral tissues. Obesity. 28:S68–S80.
  • Deibel SH, Hong NS, Himmler SM, McDonald RJ. 2014. The effects of chronic photoperiod shifting on the physiology of female Long-Evans rats. Brain Res Bull. 103:72–81.
  • Depner CM, Melanson EL, McHill AW, Wright KP Jr. 2018. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome. Proc Natl Acad Sci U S A. 115:E5390–E5399.
  • Dunlap JC, Loros JJ. 2017. Making time: conservation of biological clocks from fungi to animals. Microbiol Spectr. 5. doi:https://doi.org/10.1128/microbiolspec
  • Dweep H, Sticht C, Pandey P, Gretz N. 2011. miRWalk–database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 44:839–847.
  • Erren TC, Reiter RJ. 2009. Light Hygiene: Time to make preventive use of insights–old and new–into the nexus of the drug light, melatonin, clocks, chronodisruption and public health. Med Hypotheses. 73:537–541.
  • Evans JA, Davidson AJ. 2013. Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci. 119:283–323.
  • Falchi F, Cinzano P, Duriscoe D, Kyba CC, Elvidge CD, Baugh K, Portnov BA, Rybnikova NA, Furgoni R. 2016. The new world atlas of artificial night sky brightness. Sci Adv. 2:e1600377.
  • Fan W, Waizenegger W, Lin CS, Sorrentino V, He MX, Wall CE, Li H, Liddle C, Yu RT, Atkins AR, et al. 2017. PPARδ promotes running endurance by preserving glucose. Cell Metab. 25:1186–1193.e4.
  • Ferrell JM, Chiang JY. 2015. Short-term circadian disruption impairs bile acid and lipid homeostasis in mice. Cell Mol Gastroenterol Hepatol. 1:664–677.
  • Fonken LK, Aubrecht T, Meléndez-Fernández H, Weil Z, Nelson RJ. 2013a. Dim light at night disrupts molecular circadian rhythms and affects metabolism. J Bio Rhythms. 4:262–271.
  • Fonken LK, Weil ZM, Nelson RJ. 2013b. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain Behav Immun. 34:159–163.
  • Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ. 2010. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA. 43:18664–18669.
  • Galdames HA, Torres-Farfan C, Spichiger C, Mendez N, Abarzua-Catalan L, Alonso-Vazquez P, Richter HG. 2014. Impact of gestational chronodisruption on fetal cardiac genomics. J Mol Cell Cardiol. 66:1–11.
  • Gamble KL, Motsinger-Reif AA, Hida A, Borsetti HM, Servick SV, Ciarleglio CM, Robbins S, Hicks J, Carver K, Hamilton N, et al. 2011. Shift work in nurses: Contribution of phenotypes and genotypes to adaptation. PLoS One. 6:e18395.
  • Grønli J, Meerlo P, Pedersen TT, Pallesen S, Skrede S, Marti AR, Wisor JP, Murison R, Henriksen TE, Rempe MJ, et al. 2017. A rodent model of night-shift work induces short-term and enduring sleep and electroencephalographic disturbances. J Biol Rhythms. 32:48–63.
  • Guerrero-Vargas NN, Espitia-Bautista E, Buijs RM, Escobar C. 2018. Shift-work: Is time of eating determining metabolic health? Evidence from animal models. Proc Nutr Soc. 3:199–215.
  • Guerrero-Vargas NN, Guzmán-Ruiz M, Fuentes R, García J, Salgado-Delgado R, Basualdo Mdel C, Escobar C, Markus RP, Buijs RM. 2015. Shift work in rats results in increased inflammatory response after lipopolysaccharide administration: a role for food consumption. J Biol Rhythms. 30:318–330.
  • Gupta CC, Centofanti S, Dorrian J, Coates AM, Stepien JM, Kennaway D, Wittert G, Heilbronn L, Catcheside P, Tuckwell GA, et al. 2021. The impact of a meal, snack, or not eating during the night shift on simulated driving performance post-shift. Scand J Work Environ Health. 47:78–84.
  • Halabi D, Ehrenfeld P, Mendez N, Richter HG, Torres-Farfan C. 2020. Fetal programming of adipose tissue function by gestational chronodisruption. Sleep Science. 13:51–58.
  • Herrero L, Valcarcel L, Da Silva CA, Albert N, Diez-Noguera A, Cambras T, Serra D. 2015. Altered circadian rhythm and metabolic gene profile in rats subjected to advanced light phase shifts. PLoS One. 10:e0122570.
  • Hornstein E, Shomron N. 2006. Canalization of development by microRNAs. Nat Genet. 38:S20–S24.
  • Husse J, Kiehn JT, Barclay JL, Naujokat N, Meyer-Kovac J, Lehnert H, Oster H. 2017. Tissue-specific dissociation of diurnal transcriptome rhythms during sleep restriction in mice. Sleep. 40:6. doi:https://doi.org/10.1093/sleep/zsx068
  • Kervezee L, Cuesta M, Cermakian N, Boivin DB. 2018. Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome. Proc Natl Acad Sci U S A. 115:5540–5545.
  • Khalyfa A, Gaddameedhi S, Crooks E, Zhang C, Li Y, Qiao Z, Trzepizur W, Kay SA, Andrade J, Satterfield BC, et al. 2020. Circulating exosomal miRNAs signal circadian misalignment to peripheral metabolic tissues. Int J Mol Sci. 21:6396.
  • Kim KH. 1997. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr. 17:77–99.
  • Kim SW, Jang EC, Kwon SC, Han W, Kang MS, Nam YH, Lee YJ. 2016. Night shift work and inflammatory markers in male workers aged 20-39 in a display manufacturing company. Ann Occup Environ Med. 28:48.
  • Kivimäki M, Batty GD, Hublin C. 2011. Shift work as a risk factor for future type 2 diabetes: evidence, mechanisms, implications, and future research directions. PLoS Med. 8:e1001138.
  • Knutsson A. 2003. Health disorders of shift workers. Occup Med (Lond). 53:103–108.
  • Kolbe I, Husse J, Salinas G, Lingner T, Astiz M, Oster H. 2016. The SCN clock governs circadian transcription rhythms in murine epididymal white adipose tissue. J Biol Rhythms. 31:577–587.
  • Krizo JA, Mintz EM. 2015. Sex differences in behavioral circadian rhythms in laboratory rodents. Front Endocrinol. 5:234.
  • The Lancet Editors. 2009. Breast cancer on the night shift. Lancet. 373:1054.
  • Lee S, Mc Cann D, Messenger J. 2007. Working time around the world. trends in working hours, laws and policies in a global comparative perspective. Abingdon (UK): Routledge Taylor & Francis Group.
  • Levin MC, Monetti M, Watt MJ, Sajan MP, Stevens RD, Bain JR, Newgard CB, Farese RV Sr, Farese RV Jr. 2007. Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type II) muscle. Am J Physiol Endocrinol Metab. 293:E1772–E1781.
  • Lunde LK, Ø S, Mamen A, Sirnes PA, Aass HCD, Øvstebø R, Goffeng E, Matre D, Nielsen P, Heglum HSA, et al. 2020. Cardiovascular health effects of shift work with long working hours and night shifts: study protocol for a three-year prospective follow-up study on industrial workers. Int J Environ Res Public Health. 17:589.
  • Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR, Hall JE, Hansen J, Nelson RJ, Panda S, Smolensky MH, et al. 2017. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci Total Environ. 607-608:1073–1084.
  • Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, Ferrari R. 2018. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief Bioinform. 19:286–302.
  • Marti AR, Meerlo P, Grønli J, Van Hasselt SJ, Mrdalj J, Pallesen S, Pedersen TT, Henriksen TE, Skrede S. 2016. Shift in food intake and changes in metabolic regulation and gene expression during simulated night-shift work: a rat model. Nutrients. 8:E712.
  • Marti AR, Patil S, Mrdalj J, Meerlo P, Skrede S, Pallesen S, Pedersen TT, Bramham CR, Grønli J. 2017. No escaping the rat race: simulated night shift work alters the time-of-day variation in BMAL1 translational activity in the prefrontal cortex. Front Neural Circuits. 11:70.
  • Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaisse WJ, Mosley M, Notterpek L, Ravussin E, Scheer FA, et al. 2014. Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A. 111:16647–16653.
  • Matveyenko AV. 2018. Consideration for circadian physiology in rodent research. Physiology (Bethesda). 33:250–251.
  • Mendez N, Abarzua-Catalan L, Vilches N, Galdames HA, Spichiger C, Richter HG, Valenzuela GJ, Seron-Ferre M, Torres-Farfan C. 2012. Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One. 7:e42713.
  • Mendez N, Halabi D, Spichiger C, Salazar ER, Vergara K, Alonso-Vasquez P, Carmona P, Sarmiento JM, Richter HG, Seron-Ferre M, et al. 2016. Gestational chronodisruption impairs circadian physiology in rat male offspring, increasing the risk of chronic disease. Endocrinology. 157:4654–4668.
  • Mendez N, Torres-Farfan C, Salazar E, Bascur P, Bastidas C, Vergara K, Spichiger C, Halabi D, Vio CP, Richter HG. 2019. Fetal programming of renal dysfunction and high blood pressure by chronodisruption. Front Endocrinol (Lausanne). 10:362.
  • Möller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, Lo JC, Santhi N, Von Schantz M, Smith CP, et al. 2013. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A. 110:E1132–1141.
  • Molzof HE, Wirth MD, Burch JB, Shivappa N, Hebert JR, Johnson RL, Gamble KL. 2017. The impact of meal timing on cardiometabolic syndrome indicators in shift workers. Chronobiol Int. 34:337–348.
  • Mosendane T, Mosendane T, Raal FJ. 2008. Shift work and its effects on the cardiovascular system. Cardiovasc J Afr. 19:210–215.
  • Mukherji A, Kobiita A, Damara M, Misra N, Meziane H, Champy MF, Chambon P. 2015. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci U S A. 112:E6691–6698.
  • Nakamura MT, Yudell BE, Loor JJ. 2014. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res. 53:124–144.
  • Nunez AA, Yan L, Smale L. 2018. The cost of activity during the rest phase: animal models and theoretical perspectives. Front Endocrinol (Lausanne). 9:72.
  • Opperhuizen AL, Van Kerkhof LW, Proper KI, Rodenburg W, Kalsbeek A. 2015. Rodent models to study the metabolic effects of shiftwork in humans. Front Pharmacol. 6:50.
  • Opperhuizen AL, Wang D, Foppen E, Jansen R, Boudzovitch-Surovtseva O, De Vries J, Fliers E, Kalsbeek A. 2016. Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats. Eur J Neurosci. 44:2795–2806.
  • Pan A, Schernhammer ES, Sun Q, Hu FB. 2011. Rotating night shift work and risk of Type 2 diabetes: two prospective cohort studies in women. PLoS Med. 8:e1001141.
  • Pendergast JS, Yamazaki S. 2018. The mysterious food-entrainable oscillator: insights from mutant and engineered mouse models. J Biol Rhythms. 33:458–474.
  • Peplonska B, Bukowska A, Wieczorek E, Przybek M, Zienolddiny S, Reszka E. 2017. Rotating night work, lifestyle factors, obesity and promoter methylation in BRCA1 and BRCA2 genes among nurses and midwives. PLoS One. 12:e0178792.
  • Pickel L, Sung HK. 2020. Feeding rhythms and the circadian regulation of metabolism. Front Nutr. 7:39.
  • The PLoS Medicine Editors. 2011. Poor diet in shift workers: a new occupational health hazard? PLoS Med. 8:e1001152.
  • Richter HG, Torres-Farfán C, Rojas-García PP, Campino C, Torrealba F, Serón-Ferré M. 2004. The circadian timing system: Making sense of day/night gene expression. Biol Res. 37:11–28.
  • Robertson AL, Balachandran RC, Mahoney MM, Eubig PA. 2017. Circadian disruption affects initial learning but not cognitive flexibility in an automated set-shifting task in adult Long-Evans rats. Physiol Behav. 179:226–234.
  • Russart KLG, Nelson RJ. 2018. Light at night as an environmental endocrine disruptor. Physiol Behav. 190:82–89.
  • Rybnikova NA, Haim A, Portnov BA. 2016. Does artificial light-at-night exposure contribute to the worldwide obesity pandemic? Int J Obes (Lond). 40:815–823.
  • Saderi N, Báez-Ruiz A, Azuara-Álvarez LE, Escobar C, Salgado-Delgado RC. 2019. Differential recovery speed of activity and metabolic rhythms in rats after an experimental protocol of shift-work. J Biol Rhythms. 34:154–166.
  • Salazar ER, Richter HG, Spichiger C, Mendez N, Halabi D, Vergara K, Alonso IP, Corvalan FA, Azpeleta C, Seron-Ferre M, et al. 2018. Gestational chronodisruption leads to persistent changes in the rat fetal and adult adrenal clock and function. J Physiol. 596:5839–5857.
  • Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C. 2010. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology. 151:1019–1029.
  • Salgado-Delgado RC, Saderi N, Basualdo Mdel C, Guerrero-Vargas NN, Escobar C, Buijs RM. 2013. Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats. PLoS One. 8:e60052.
  • Samulin Erdem J, Skare Ø, Petersen-Øverleir M, Notø HØ, Lie JS, Reszka E, Pepłońska B, Zienolddiny S. 2017. Mechanisms of breast cancer in shift workers: DNA methylation in five core circadian genes in nurses working night shifts. J Cancer. 8:2876–2884.
  • Santhi N, Lazar AS, McCabe PJ, Lo JC, Groeger JA, Dijk DJ. 2016. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc Natl Acad Sci U S A. 19:E2730–2739.
  • Scheer FA, Hilton MF, Mantzoros CS, Shea SA. 2009. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 106:4453–4458.
  • Sengupta P. 2013. The laboratory rat: relating its age with human’s. Int J Prev Med. 6:624–630.
  • Seron-Ferre M, Mendez N, Abarzua-Catalan L, Vilches N, Valenzuela FJ, Reynolds HE, Llanos AJ, Rojas A, Valenzuela GJ, Torres-Farfan C. 2012. Circadian rhythms in the fetus. Mol Cell Endocrinol. 1:68–75.
  • Sharma A, Laurenti MC, Dalla Man C, Varghese RT, Cobelli C, Rizza RA, Matveyenko A, Vella A. 2017. Glucose metabolism during rotational shift-work in healthcare workers. Diabetologia. 60:1483–1490.
  • Shi F, Chen X, Fu A, Hansen J, Stevens R, Tjonneland A, Vogel UB, Zheng T, Zhu Y. 2013. Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers. Environ Mol Mutagen. 54:406–413.
  • Spichiger C, Torres-Farfan C, Galdames HA, Mendez N, Alonso-Vazquez P, Richter HG. 2015. Gestation under chronic constant light leads to extensive gene expression changes in the fetal rat liver. Physiol Genomics. 47:621–633.
  • Stow LR, Gumz ML. 2011. The circadian clock in the kidney. J Am Soc. 4:598–604.
  • Tokonami N, Mordasini D, Pradervand S, Centeno G, Jouffe C, Maillard M, Bonny O, Gachon F, Gomez RA, Sequeira-Lopez ML, et al. 2014. Local renal circadian clocks control fluid-electrolyte homeostasis and BP. J Am Soc Nephrol. 25:1430–1439.
  • Torres-Farfan C, Mendez N, Ehrenfeld P, Seron-Ferre M. 2020. In utero circadian changes; facing light pollution. Curr Opin Physiol. 13:128–134.
  • Van Dycke KC, Pennings JL, Van Oostrom CT, Van Kerkhof LW, Van Steeg H, Van Der Horst GT, Rodenburg W. 2015. Biomarkers for circadian rhythm disruption independent of time of day. PLoS One. 10:e0127075.
  • Varcoe TJ, Boden MJ, Voultsios A, Salkeld MD, Rattanatray L, Kennaway DJ. 2013. Characterisation of the maternal response to chronic phase shifts during gestation in the rat: Implications for fetal metabolic programming. PLoS One. 8:e53800.
  • Varcoe TJ, Gatford KL, Kennaway DJ. 2018. Maternal circadian rhythms and the programming of adult health and disease. Am J Physiol Regul Integr Comp Physiol. 2:R231–R241.
  • Varcoe TJ, Wight N, Voultsios A, Salkeld MD, Kennaway DJ. 2011. Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat. PLoS One. 6:e18504.
  • Vetter C, Dashti HS, Lane JM, Anderson SG, Schernhammer ES, Rutter MK, Saxena R, Scheer FAJL. 2018. Night Shift Work, Genetic Risk, and Type 2 Diabetes in the UK Biobank. Diabetes Care. 41:762–769.
  • Vilches N, Spichiger C, Mendez N, Abarzua-Catalan L, Galdames HA, Hazlerigg DG, Richter HG, Torres-Farfan C. 2014. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS One. 9:e91313.
  • Wang AJ, Wang S, Wang BJ, Xiao M, Guo Y, Tang Y, Zhang J, Gu J. 2021. Epigenetic regulation associated with sirtuin 1 in complications of diabetes mellitus. Front Endocrinol (Lausanne). 11:598012.
  • Wefers J, Van Moorsel D, Hansen J, Connell NJ, Havekes B, Hoeks J, Van Marken Lichtenbelt WD, Duez H, Phielix E, Kalsbeek A, et al. 2018. Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc Natl Acad Sci U S A. 115:7789–7794.
  • Weiss DR, Glickman JF. 2003. Characterization of fatty acid synthase activity using scintillation proximity. Assay Drug Dev Technol. 1:161–166.
  • WHO. 2013. A global brief on hypertension Silent killer, global public health crisis. WHO/DCO/WHD/2013.2.
  • Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS. 1993. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 75:187–197.
  • Zelinski EL, Tyndall AV, Hong NS, McDonald RJ. 2013. Persistent impairments in hippocampal, dorsal striatal, and prefrontal cortical function following repeated photoperiod shifts in rats. Exp Brain Res. 224:125–139.
  • Zhong LX, Li XN, Yang GY, Zhang X, Li WX, Zhang QQ, Pan HX, Zhang HH, Zhou MY, Wang YD, et al. 2019. Circadian misalignment alters insulin sensitivity during the light phase and shifts glucose tolerance rhythms in female mice. PLoS One. 14:e0225813.
  • Zhu JL, Hjollund NH, Andersen AM, Olsen J. 2004. Shift work, job stress, and late fetal loss: The National Birth Cohort in Denmark. J Occup Environ Med. 46:1144–1149.
  • Zhu Y, Stevens RG, Hoffman AE, Tjonneland A, Vogel UB, Zheng T, Hansen J. 2011. Epigenetic impact of long-term shiftwork: Pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int. 28:852–861.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.