Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 41, 2024 - Issue 5
98
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The ticking clock in the dark: Review of biological rhythms in cave invertebrates

ORCID Icon, ORCID Icon & ORCID Icon
Pages 738-756 | Received 07 Jan 2024, Accepted 19 Apr 2024, Published online: 09 May 2024

References

  • *Abhilash L, Shindey R, Sharma VK. 2017. To be or not to be rhythmic? A review of studies on organisms inhabiting constant environments. Biol Rhythm Res. 48:677–691. doi: 10.1080/09291016.2017.1345426
  • Allegrucci G, Cesaroni D, Sbordoni V. 1987. Adaptation and speciation of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): geographic variation of morphometric indices and allozyme frequencies. Biol J Linn Soc. 31:151–160. doi: 10.1111/j.1095-8312.1987.tb01986.x
  • Allegrucci G, Todisco V, Sbordoni V. 2005. Molecular phylogeography of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): a scenario suggested by by mitochondrial DNA. Mol Phylogenet Evol. 37:153–164. doi: 10.1016/j.ympev.2005.04.022
  • Arruda EF, Ferreira RT. 2014. Dinâmica intrarregional do Brasil: quem dirige o crescimento industrial das regiões brasileiras? Econ Apl. 18:243–270. doi: 10.1590/1413-8050/ea404
  • Aschoff J. 1981. Freerunning and entrained circadian rhythms. In: Aschoff J, editor. Handbook of behavioral neurobiology, biological rhythms. New York: Springer; Plenum Press. p. 81–93. doi: 10.1007/978-1-4615-6552-9
  • *Auletta L, Inguscio S, Pasquali V 2017. Studio sulla ritmicità endogena nell‟attività motoria di Niphargus poianoi salernianus. Paper presented at: Atti del III Convegno Regionale di Speleologia - Campania Speleologica 2; Napoli, Italy.
  • Barr TC. 1967. Ecological studies in the Mammoth Cave system of Kentucky I: The biota. Int J Speleol. 3:147–204. doi: 10.5038/1827-806X.3.1.10
  • Barr TC, Holsinger JR. 1985. Speciation in cave faunas. Annu Rev Ecol Evol Syst. 16:313–337. doi: 10.1146/annurev.es.16.110185.001525
  • Beale AD, Whitmore D, Moran D. 2016. Life in a dark biosphere: a review of circadian physiology in “arrhythmic” environments. J Comp Physiol B. 186:947–968. doi: 10.1007/s00360-016-1000-6
  • Beron P. 2015. Comparative study of the invertebrate cave faunas of Southeast Asia and New Guinea. Hist Nat Bulg. 21:169–210.
  • *Berry SE, Gilchrist J, Merritt DJ. 2017. Homeostatic and circadian mechanisms of bioluminescence regulation differ between a forest and a facultative cave species of glowworm, Arachnocampa. J Insect Physiol. 103:1–9. doi: 10.1016/j.jinsphys.2017.09.005
  • Bichuette ME, Menna-Barreto L. 2005. Preliminary data on locomotor activity rhythms on epigean and cave snails, genus Potamolithus (Hydrobiidae), from southeastern Brazil. Subterr Biol. 3:43–48.
  • *Bichuette ME, Trajano E. 1999. Light reaction and feeding behavior in epigean and cave Potalithus species from Upper Ribeira Valley, Southeastern Brazil (Mollusca: Gastropoda: Hydrobiidae). Mem Biospéol. 26:1–6.
  • Bichuette ME, Trajano E. 2003. Population study of epigean and subterranean Potamolithus snails from southeast Brazil (Mollusca: Gastropoda Hydrobiidae). Hydrobiol. 505:107–117. doi: 10.1023/B:HYDR.0000007299.26220.b8
  • *Blume J, Bünning E, Günzler E. 1962. Zur Aktivitätsperiodik bei Höhlentieren. Sci Nat. 49:525–525. doi: 10.1007/BF00636364
  • *Bodharamik T, Sungvornyothin S, Juntarajumnong W, Bangs MJ, Arunyawat U. 2021. Genetic variation of circadian clock genes in a cavernicolous Anopheles dirus (Diptera: Culicidae) in Western Thailand. Agric Nat Resour. 55:968–975.
  • *Braga PLM, Sá FD, Guadanucci JPL. 2011. Population ecology of spider troglophyles Trechona sp. (Mygalomorph, Dipluridae) cave in monte cristo, diamantina, Minas Gerais. Paper presented at: Anais do 31º congresso brasileiro de espeleologia ponta grossa-PR, Sociedade Brasileira de Espeleologia; Ponta Grossa, PR.
  • *Brown FA. 1961. Diurnal rhythm in cave crayfish. Nature. 19:929–930. doi: 10.1038/191929b0
  • *Campbell GD. 1976. Activity rhythm in the cave cricket, Ceuthophilus conicaudus Hubbell. Am Midl Nat. 96:350–366. doi: 10.2307/2424075
  • Cardoso P. 2012. Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int J Speleol. 41:83–94. doi: 10.5038/1827-806X.41.1.9
  • Culver DC, Hobbs HH. 2017. Biodiversity of mammoth cave. In: Hobs HH, Olson R, Winkler E Culver D, editors. Mammoth cave: a human and natural history, cave and Karst systems of the world. Berlin (Heid): Springer. p. 227–234. doi: 10.1007/978-3-319-53718-4_15
  • Culver DC, Pipan T. 2009. The biology of caves and other subterranean habitats. Acta Carsol. 38:309–311. doi: 10.3986/ac.v38i2-3.168
  • Decú V, Juberthie C. 1998. Coléoptères (généralités et synthèse): en français. In: Juberthie C Decu V, editors. Encyclopedia Biospeologica. Moulis: Société de Biospéologie. p. 1025–1030.
  • Deharveng L, Ellis M, Bedos A, Jantarit S. 2023. Tham Chiang Dao: a hotspot of subterranean biodiversity in Northern Thailand. Diversity. 15:1076. doi: 10.3390/d15101076
  • Delić T, Švara V, Coleman CO, Trontelj P, Fišer C. 2017. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool Scr. 46:740–752. doi: 10.1111/zsc.12252
  • Duboué ER, Borowsky RL, Nitabach MN. 2012. Altered rest-activity patterns evolve via circadian independent mechanisms in cave adapted balitorid loaches. PLOS ONE. 7:e30868. doi: 10.1371/journal.pone.0030868
  • *Espinasa L, Collins E, Finocchiaro A, Kopp J, Robinson J, Rutkowski J. 2016. Incipient regressive evolution of the circadian rhythms of a cave amphipod. Subterr Biol. 20:1–13. doi: 10.3897/subtbiol.20.10010
  • Faille A, Deharveng L. 2021. The Coume Ouarnède system, a hotspot of subterranean biodiversity in Pyrenees (France). Diversity. 13:419. doi: 10.3390/d13090419
  • Ferreira RL, Giribet G, Du Preez G, Ventouras O, Janion C, Silva MS. (2020). The Wynberg cave system, the most important site for cave fauna in South Africa at risk. Subterr Biol. 36:73–81. doi: 10.3897/subtbiol.36.60162
  • Fingerman M, Lago AD. 1957. Endogenous twenty-four hour rhythms of locomotor activity and oxygen consumption in the Crawfish Orconectes clypeatus. Am Midl Nat. 58:383–393. doi: 10.2307/2422622
  • Fišer C, Blejec A, Trontelj P. 2012. Niche-based mechanisms operating within extreme habitats: a case study of subterranean amphipod communities. Biol Lett. 23:578–581. doi: 10.1098/rsbl.2012.0125
  • Fišer Ž, Prevorčnik S, Lozej N, Trontelj P. 2019. No need to hide in caves: Shelter-seeking behavior of surface and cave ecomorphs of Asellus aquaticus (Isopoda: Crustacea). Zoology. 134:58–65. doi: 10.1016/j.zool.2019.03.001
  • *Friedrich M. 2013. Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr Comp Biol. 53:50–67. doi: 10.1093/icb/ict058
  • *Friedrich M, Chen R, Daines B, Bao R, Caravas J, Rail PK, Zagmajster M, Peck SB. 2011. Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave. J Exp Biol. 214:3532–3541. doi: 10.1242/jeb.060368
  • *Galbiati M, Lapadula S, Forlani M, Barzaghi B, Manenti R. 2023. Both light stimuli and predation risk affect the adult behavior of a stygobitic crustacean. Diversity. 15:290. doi: 10.3390/d15020290
  • *Gnaspini P, Santos FH, Hoenen S. 2003. The occurrence of different phase angles between contrasting seasons in the activity patterns of the cave harvestman Goniosoma spelaeum (Arachnida, Opiliones). Biol Rhythm Res. 34:31–49. doi: 10.1076/brhm.34.1.31.14082
  • *Guadanucci JPL, Braga PLM, Sá FDS. 2015. Aspects of the activity rhythm and population size of troglophilic mygalomorph spiders (Trechona sp. Dipluridae) in a quartzite cave in Minas Gerais. Brazil J Nat Hist. 49:889–903. doi: 10.1080/00222933.2014.946108
  • Gu Z, Gu L, Eils R, Schlesner M, Brors B. 2014. Circlize: implements and enhances circular visualization in R. Bioinform. 30:2811–2812. doi: 10.1093/bioinformatics/btu393
  • Gunn J. 2004. Encyclopedia of caves and karst science. New York; London: Fitzroy Dearborn; Taylor and Francis Group.
  • Haddaway NR, Collins AM, Coughlin D, Kirk S, Wray KB. 2015. The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLOS ONE. 10:e0138237. doi: 10.1371/journal.pone.0138237
  • Halberg F. 1969. Chronobiology. Annu Rev Physiol. 31:675–726. doi: 10.1146/annurev.ph.31.030169.003331
  • *Hoenen S. 2005. Circadian patterns in the activity of the Brazilian cave cricket Strinatia brevipennis (Ensifera: Phalangopsidae). Eur J Entomol. 102:663–668. doi: 10.14411/eje.2005.094
  • *Hoenen S, Gnaspini P. 1999. Activity rhythms and behavioral characterization of two epigean and one cavernicolous harvestmen (Arachnida, Opiliones, Gonyleptidae). J Arachnol. 27:159–164.
  • *Hoenen S, Marques MD. 1998. Circadian patterns of migration of Strinatia brevipennis (Orthoptera: Phalangopsidae) inside a cave. Biol Rhythm Res. 29:480–487. doi: 10.1076/brhm.29.5.480.4826
  • *Hoenen S, Schimmel M, Marques MD. 2001. Rescuing rhythms from noise: a new method of analysis. Biol Rhythm Res. 32:271–284. doi: 10.1076/brhm.32.2.271.1365
  • Howarth FG. 1983. Ecology of cave arthropods. Annu Rev Entomol. 28:365–389. doi: 10.1146/annurev.en.28.010183.002053
  • Hubbell TH, Norton RM. 1978. The systematics and biology of the cave-crickets of the North American tribe Hadenoecini (Orthoptera Saltatoria: Ensifera: Rhaphidophoridae: Dolichopodinae). Misc Publ. 156:1–124.
  • *Jegla TC, Poulson TL. 1968. Evidence of circadian rhythms in a cave crayfish. J Exp Zool. 168:273–282. doi: 10.1002/jez.1401680213
  • *Jegla TC, Poulson TL. 1970. Circannian rhythms – I. Reproduction in the cave crayfish, Orconectes pellucidus inermis. Comp Biochem Physiol. 33:347–355. doi: 10.1016/0010-406X(70)90355-5
  • Kavaliers M. 1981. Circadian and ultradian activity rhythms of a freshwater gastropod, helisoma trivolis: The effects of social factors and eye removal. Behav Neural Biol. 32:350–363. doi: 10.1016/s0163-1047(81).92411-0
  • Kayo RT, Marmonier P, Togouet SHZ, Nola M, Piscart C. 2012. An annotated checklist of freshwater stygobiotic crustaceans of Africa and Madagascar. Crust. 85:1613–1631. doi: 10.1163/15685403-00003134
  • *Koilraj AJ, Sharma VK, Marimuthu G, Chandrashekaran MK. 2000. Presence of circadian rhythms in the locomotor activity of a cave-dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol Int. 17:757–765. doi: 10.1081/CBI-100102111
  • Lamprecht G, Weber F. 1975. Die Circadian-Rhythmik von drei unterschiedlich weit an ein Leben unter Höhlenbedingungen adaptierten Laemostenus-Arten (Coleoptera, Carabidae). Ann Spéléol. 30:471–482.
  • *Lamprecht G, Weber F. 1977. Die Lichtempfindlichkeit der circadianen Rhythmik dreier Höhlenkafer- Arten der Gattung Laemostenus. J Insect Physiol. 23:445–452. doi: 10.1016/0022-1910(77)90254-2
  • *Lamprecht G, Weber F 1979. The regressive evolution of the circadian system controlling locomotion in cavernicolous animals. Misc. Papers 18. Agricultural university Wageningen the Netherlands on the evolution of behavior in carabid beetles.
  • Lamprecht G, Weber F. 1983. Activity control in the eyeless carabid beetle Typhlochoromus stolzi, an inhabitant of a superficial subterranean compartment. Biol Mem. 10:377–383.
  • Lamprecht G, Weber F. 1992. Spontaneous locomotion behavior in cavernicolous animals:the regression of the endogenous circadian system. Monografias del Museo Nacional de Ciencias Naturales. In: Camacho A, editor. The natural history of biospeleology. Madrid: Ulises. p. 225–262.
  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6:e1000100. doi: 10.1371/journal.pmed.1000100
  • Liu W, Golovatch S, Wesener T, Tian M, Wicker-Thomas C. 2017. Convergent evolution of unique morphological adaptations to a subterranean environment in cave millipedes (Diplopoda). PLOS ONE. 12:e0170717. doi: 10.1371/journal.pone.0170717
  • Li X-Q, Xiang X-G, Jabbour F, Hagen O, Ortiz RDC, Soltis PS, Soltis DE, Wang W. 2022. Biotic colonization of subtropical East Asian caves through time. Proc Natl Acad Sci USA. 119:e207199119. doi: 10.1073/pnas.2207199119
  • Macdonald PL, Gardner RC. 2000. Type I error rate comparisons of post hoc procedures for I J Chi-Square tables. Appl Psychol Meas. 60:735–754. doi: 10.1177/00131640021970871
  • Mammola S, Cardoso P, Culver DC, Deharveng L, Ferreira RL, Fišer C, Galassi DMP, Griebler C, Halse S, Humphreys WF, et al. 2019. Scientists’ warning on the conservation of subterranean ecosystems. BioSci. 69:641–650. doi: 10.1093/biosci/biz064
  • Mammola S, Lunghi E, Bilandžija H, Cardoso P, Grimm V, Schmidt SI, Hesselberg T, Martínez A. 2021. Collecting eco-evolutionary data in the dark: impediments to subterranean research and how to overcome them. Ecol Evol. 11:5911–5926. doi: 10.1002/ece3.7556
  • Mammola S, Meierhofer MB, Borges PAV, Colado R, Culver DC, Deharveng L, Delić T, Lorenzo TD, Dražina T, Ferreira RL, et al. 2022. Towards evidence-based conservation of subterranean ecosystems. Biol Rev. 97:1476–1510. doi: 10.1111/brv.12851
  • Marimuthu G, Rajan S, Chandrashekaran MK. 1981. Social entrainment of the circadian rhythm in the flight activity of the microchiropteran bat Hipposideros speoris. Behav Ecol Sociobiol. 8:147–150. doi: 10.1007/BF00300827
  • *Martin W, Weber F. 1985. Regression of the time-keeping ability in carabid beetles by phylogenetic adaptation to cave conditions. Z Naturforsch. 40:438–445. doi: 10.1515/znc-1985-5-625
  • *Maynard AJ, Merritt DJ. 2013. Synchronization of circadian bioluminescence as a group-foraging strategy in cave glowworms. Integr Comp Biol. 53:154–164. doi: 10.1093/icb/ict011
  • Mchugh ML. 2013. The Chi-Square test of independence. Biochem Med. 143–149. doi: 10.11613/bm.2013.018
  • *Mead M, Gilhodes JC. 1974. Organization temporelle de l’activité locomotrice chez un animal cavernicole Blaniulus lichtensteini Bröl. (Diplopoda). J Comp Physiol. 90:47–52. doi: 10.1007/BF00698366
  • Menna-Barreto L, Trajano E. 2015. Biological rhythmicity in subterranean animals: a function risking extinction? Biol Environ Sci. 4. doi: 10.1007/978-3-319-08945-4_4
  • *Merritt DJ, Clarke AK. 2011. Synchronized circadian bioluminescence in cave-dwelling Arachnocampa tasmaniensis (Glowworms). J Biol Rhythms. 26:34–43. doi: 10.1177/0748730410391947
  • *Merritt DJ, Clarke AK. 2013. The impact of cave lighting on the bioluminescent display of the Tasmanian glow-worm Arachnocampa tasmaniensis. J Insect Conserv. 17:147–153. doi: 10.1007/s10841-012-9493-0
  • *Merritt DJ, Rodgers EM, Amir AF, Clarke AK. 2012. Same temporal niche, opposite rhythmicity: two closely related bioluminescent insects with opposite bioluminesce propensity rhythms. Chronobiol Int. 29:1336–1344. doi: 10.3109/07420528.2012.728549
  • Meyer C, Kreft H, Guralnick R, Jetz W. 2015. Global priorities for an effective information basis of biodiversity distributions. Nat Commun. 6:8221. doi: 10.1038/ncomms9221
  • Miller PL. 1974. Rhythmic activities and the insect nervous system. Exp Anal Insect Behav. 114–138. doi: 10.1007/978-3-642-86666-1_9
  • Moldovan OT, Kovac L, Halse S. 2018. Cave ecology. Basel (Switzerland): Springer. doi: 10.1007/978-3-319-98852-8
  • Moran D, Softley R, Warrant EJ, Mistlberger RE. 2014. Eyeless Mexican cavefish save energy by eliminating the circadian rhythm in metabolism. PLOS ONE. 9:e107877. doi: 10.1371/journal.pone.0107877
  • Nanni V, Piano E, Cardoso P, Isaia M, Mammola S. 2023. An expert-based global assessment of threats and conservation measures for subterranean ecosystems. Biol Conserv. 283:110136. doi: 10.1016/j.biocon.2023.110136
  • Nikhil KL, Sharma VK. 2017. On the origin and implications of circadian time-keeping: an evolutionary perspective. In: Kumar V, editor. Biological timekeeping: clocks, rhythms and behavior. Heidelberg: Vinod Kumar Springer. p. 81–129. doi: 10.1007/978-81-322-3688-7
  • Oda GA, Caldas IL, Piqueira JRC, Waterhouse JM, Marques MD. 2000. Coupled biological oscillators in a cave insect. J Theor Biol. 206:515–524. doi: 10.1006/jtbi.2000.2151
  • *Oliveira MPA, Ferreira RL, Bartell PA. 2014. Aspects of the behavior and activity rhythms of Rowlandius potiguar (Schizomida: Hubbardiidae). PLoS One. 9:e91913. doi: 10.1371/journal.pone.0091913
  • *O-Martínez ADL, Verde MA, Valadez RL, Viccon-Pale JA, Fuentes-Pardo B. 2004. About the existence of circadian activity in cave crayfish. Biol Rhythm Res. 35:195–204. doi: 10.1080/09291010412331335742
  • Page MJ, Mckenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 372:n71. doi: 10.1136/bmj.n71
  • *Park O, Roberts T, Harris S. 1941. Preliminary analysis of activity of the cave crayfish, Cambarus pellucidus. Am Nat. 75:154–171. doi: 10.1086/280943
  • *Pasquali V, Renzi P, Belmonte G, Pesce GL. 2007. An infrared beam device for the study of the motor activity rhythms on groundwater Mysidacea. Thalass Sal. 30:93–106.
  • *Pasquali V, Renzi P, Lucarelli M, Sbordoni V. 2005. Locomotor activity in Dolichopoda cave crickets. A chronobiological study of populations from natural and artificial caves. Subterr Biol. 3:49–55.
  • *Pasquali V, Sbordoni V. 2014. High variability in the expression of circadian rhythms in a cave beetle population. Biol Rhythm Res. 45:925–939. doi: 10.1080/09291016.2014.934077
  • Pearson K. 1895. Note on regression and inheritance in the case of two parents. Proc R Soc Lond. 58:240–242.
  • Pellegrini TG, Ferreira RL. 2011. Ultrastructural analysis of Coarazuphium formoso (Coleoptera: Carabidae Zuphiini), a new Brazilian troglobitic beetle. Zootaxa. 2866:39–49. doi: 10.11646/zootaxa.2866.1.2
  • Poulson TL. 1992. The mammoth cave ecosystem. In: Camacho A, editor. The natural history of biospeleology. Madrid: Museo Nancional de Ciencias Naturales. p. 569–612.
  • Poulson TL, White WB. 1969. The cave environment. Sci. 165:971–981. doi: 10.1126/science.165.3897.971
  • Pradhan RK, Pati AK, Agarwal SM. 1989. Meal scheduling modulation of circadian rhythm of phototactic behavior in cave dwelling fish. Chronobiol Int. 6:245–249. doi: 10.3109/07420528909056925
  • Racovitza EG. 1907. Essai sur les problèmes biospéologiques. Archives de Zoologie Expérimentale et Générale. In: Bélles X, editor. Assaig sobre els problemes bioespeleològics. Barcelona: Institut d´Estudis Catalans. p. 371–488.
  • Ramm T, Scholtz G. 2017. No sight, no smell? – brain anatomy of two amphipod crustaceans with different lifestyles. Arthropod Struct Dev. 46:537–551. doi: 10.1016/j.asd.2017.03.003
  • Refinetti, R. 2016. Daily and circadian rhythms. In: Refinetti R, editor. Circadian physiology. Boca Raton: CRC Press. p. 169–236. doi:10.1201/9781420039016.ch5
  • *Reichle DE, Palmer JD, Park O. 1965. Persistent rhythmic locomotor activity in the cave cricket, Hadenoecus subterraneus, and its ecological significance. Am Midl Nat. 74:57–66. doi: 10.2307/2423119
  • *Rossano C, Morgan E, Scapini F. 2008. Variation of the locomotor activity rhythms in three species of talitrid amphipods, Talitrus saltator, Orchestia montagui, and O. gammarellus, from various habitats. Chronobiol Int. 25:511–532. doi: 10.1080/07420520802257869
  • *Royzenblat S, Kulacic J, Friedrich M. 2023. Evidence of ancestral nocturnality, locomotor clock regression, and cave zone-adjusted sleep duration modes in a cave beetle. Subterr Biol. 45:79–94. doi: 10.3897/subtbiol.45.100717
  • Rusdea E. 1992. Stabilierende Selektion bei microphthalmen Höhlentieren: Untersuchungen zur tageszeitlichen Aktivitätsverteilung und Poplationsdynamik von Laemostenus schreibersi (Küster) (Carabidae). Mem Biospeol. 19:8–110.
  • Rusdea E 1999. Laemostenus schreibersi (Coleoptera, Carabidae), a carabid beetle living in caves and the surrounding fissure-system. Paper presented at: 37 Lebensraum Blockhalde, Tagungsband zum Symposium yom, Decheniana Beihefte; Bonn, Germany.
  • Sharpe D. 2015. Chi-Square test is statistically significant: now what? Pract Assess Res Eval. 20(8): 1–10. doi: 10.7275/tbfa-x148
  • Sharratt NJ, Picker MD, Samways MJ. 2000. The invertebrate fauna of the sandstone caves of the Cape Peninsula (South Africa): patterns of endemism and conservation priorities. Biodivers Conserv. 9:107–143. doi: 10.1023/A:1008968518058
  • Šilhavý V. 1974. A new subfamily of Gonyleptidae from Brazilian caves, Pachylospeleinae subfam. n. (Opiliones, Gonyleptomorhpi). Rev Suisse Zool. 81:893–898. doi: 10.5962/bhl.part.76049
  • *Simon RB. 1973. Cave cricket activity rhythms and the earth tides. J Interdiscipl Cycle Res. 4:31–39. doi: 10.1080/09291017309359365
  • Simona T, Boris S, Şerban S. 1996. Comparison between some epigean and hypogean populations of Asellus aquaticus (Crustacea: Isopoda: Asellidae). Hydrobiol. 337:161–170. doi: 10.1007/bf00028517
  • Simone LRL. 2022. Gastropoda. In: Zampaulo A Prous X, editors Cave fauna of Brazil. Brazil (MG): Rupestre. p. 305–315.
  • *Soriano-Morales S, Caballero-Hernández O, Dávila-Montes M, Morales-Malacara JB, Miranda-Anaya M. 2013. Circadian locomotor activity and entrainment by light cycles in cave spiders (Dipluridae and Ctenidae) at the cave Los Riscos, Qro. México. Biol Rhythm Res. 44:949–955. doi: 10.1080/09291016.2013.781330
  • *Stringer I, Meyer-Rochow VB. 1997. Flight activity of insects within a Jamaican cave: in search of the zeitgeber. Invertebr Biol. 116:348–354. doi: 10.2307/3226867
  • Studier EH, Lavoie KH, Wares WD, Linn II, Linn JAM. 1986. Bioenergetics of the cave cricket, Hadenoecus subterraneus. Comp Biochem Physiol. 84:431–436. doi: 10.1016/0300-9629(86)90342-7
  • Trajano E, Carvalho MR, Duarte L, Menna-Barreto L. 2009. Comparative study on free-running locomotor activity circadian rhythms in Brazilian subterranean fishes with different degrees of specialization to the hypogean life (Teleostei: Siluriformes, Characiformes). Biol Rhythm Res. 40:477–489. doi: 10.1080/09291010902731205
  • Volpato GL, Trajano E, de Almeida VMF. 2006. Biological rhythms. In: Val A Randall D, editors The physiology of tropical fishes. Fish physiology. London: Academic Press. p. 101–146.
  • Weber F. 1980. Die regressive Evolution des Zeitmessvermögens bei Höhlen-Arthropoden. Mem Biospeol. 7:287–312.
  • *Weber F, Casale A, Lamprecht G, Rusdea E. 1994. Highly sensitive reactions of microphthalmic carabid beetles to light/dark cycles. Carabid Beetles. 51:219–225.
  • Wickham H. 2016. Ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.
  • *Wiley SBA 1973. A comparison of respiration and activity in four species of cavernicolous beetles (Carabidae, Rhadine) [ thesis]. Lubbock (TX): Texas Tech University.
  • Zampaulo RDA, Simões MH. 2022. History and evolution of knowledge about the cave fauna of Brazil. In: Zampaulo R Prous X, editors. Cave fauna of Brazil. Brazil (MG): Rupestre. p. 23–57.
  • Zizka A, Rydén O, Edler D, Klein J, Aronsson H, Perrigo A, Silvestro D, Jagers SC, Lindberg SI, Antonelli A. 2020. Exploring the impact of political regimes on biodiversity. V-Dem WP. 98:1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.