133
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effects of intracerebroventricularly injected glucagon-like peptide-2 on ethanol-induced gastric mucosal damage in rats

, , &
Pages 220-227 | Received 02 Jun 2016, Accepted 29 Mar 2018, Published online: 09 Apr 2018

References

  • Mojsov S, Heinrich G, Wilson IB, Ravazola M, Orci L, Habener JF. Preproglucagon gene expression in pancreas and intestine diversifies at the level of posttranslational processing. J Biol Chem. 1986;261:11880–11889.
  • Qrskov C, Holst JJ. Radioimmunoassays for glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). Scan J Gastroenterol. 1987;47:165–174.
  • Murphy KG, Bloom SR. Gut hormones and regulation of energy homeostasis. Nature. 2006;444:854–859.
  • Dube PE, Brubaker PL. Frontiers in glucagons-like peptide-2: multiple actions, multiple mediators. Am J Physiol Endocrinol Metab. 2007;293:E460–5.
  • Guan X, Stoll B, Lu X, et al. GLP-2 mediated up regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets. Gastroenterology. 2003;125:136–147.
  • Hsich J, Longuet C, Maida A, et al. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology. 2011;137:997–1005.
  • Sigalet DL, Wallace L, De Heuval E, Sharkey KA. The effects of glucagon-like peptide 2 on enteric neurons in intestinal inflammation. Neurogastroenterol Motil. 2010;22:1318–e350.
  • Guan X, Shi X, Li X, et al. GLP-2 receptor in POMC neurons suppresses feeding behavior and gastric motility. Am J Physiol Endocrinol Metab. 2012;303:E853–64.
  • Guan X. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis. Am J Physiol Regul Integr Comp Physiol. 2014;307:R585–96.
  • Iwai T, Hayashi Y, Narita S, et al. Antidepressant–like effects of glucagon-like peptide-2 in mice occur via monoamine pathways. Behav Brain Res. 2009;204:235–240.
  • Iwai T, Kaneko M, Sakaki-Hamada S, Oka JI. Characterization of the hypotensive effects of glucagon-like peptide-2 in anesthetized rats. Neurosci Lett. 2013;550:104–108.
  • Gulec Suyen G, Isbil-Buyukcoskun N, Cam B, Ozluk K. Effects of centrally injected glucagon-like peptide-2 on gastric mucosal blood flow in rats: possible mechanisms. Peptides. 2015;64:62–66.
  • Nelson DW, Sharp JW, Brownfield MS, Raybould HE, Ney DM. Localization and activation of glucagon-like peptide-2 receptors on vagal afferent in the rat. Endocrinology. 2007;148:1954–1962.
  • Lovshin J, Estall J, Yusta B, Brown TJ, Drucker DJ. Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J Biol Chem. 2001;276:21489–21499.
  • Lovshin JA, Huang Q, Seaberg R, Brubaker PL, Drucker DJ. Extrahypothalamic expression of the glucagon-like peptide-2 receptor is coupled to reduction of glutamate367 induced cell death in cultured hippocampal cells. Endocrinology. 2004;145:3495–3506.
  • Gyires. Neuropeptides and gastric mucosal homeostasis. Curr Top Med Chem. 2004;4:63–73.
  • Tang-Christensen M, Larsen PJ, Thulesen J, Romer J, Vrang N. The proglucagon derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med. 2000;6:802–807.
  • Amato A, Baldassano S, Serio R, Mulé F. Glucagon-like peptide-2 relaxes mouse stomach through vasoactive intestinal peptide release. Am J Physiol Gastrointest Liver Physiol. 2009;296:G678–84.
  • Gyires K, Zadori ZS. Brain neuropeptides in gastric mucosal protection. Curr Opin Pharmacol. 2014;19:24–30.
  • Kawano S, Tsuji S. Role of mucosal blood flow: a conceptional review in gastric mucosal injury and protection. J Gastroenterol Hepatol. 2000;15(Suppl):D1–6.
  • Holzer P, Guth PH. Neuropeptide control of rat gastric mucosal blood flow: increase by calcitonin gene-related peptide and vasoactive intestinal polypeptide, but not substance P and neurokinin. Circ Res. 1991;12:25–31.
  • Işbil Büyükcoşkun N, Gulec G. Effects of centrally injected GLP-1 in various experimental models of gastric mucosal damage. Peptides. 2004;25:1179–1183.
  • Işbil Büyükcoşkun N, Gulec G. Investigation of the mechanisms involved in the central effects of glucagon-like peptide-1 on ethanol-induced gastric mucosal lesions. Regul Pept. 2005;128:57–62.
  • Işbil-Buyukcoskun N, Cam-Etoz B, Gulec G, Ozluk K. Effect of peripherally-injected glucagon-like peptide-1 on gastric mucosal blood flow. Regul Pept. 2009;157(1–3):72–75.
  • Işbil-Buyukcoskun N, Gulec G, Cam-Etoz B, Ozluk K. Peripheral GLP-1 gastroprotection against ethanol: the role of exendin, NO, CGRP, prostaglandins and blood flow. Regul Pept. 2009;152:22–27.
  • Nagell CF, Wettergren A, Pedersen JF, Mortensen D, Holst JJ. Glucagon-like peptide-2 inhibits antral emptying in man, but is not as potent as glucagon-like peptide-1. Scand J Gastroenterol. 2004;4:353–358.
  • Tache Y. Brainstem neuropeptides and vagal protection of the gastric mucosal against injury: role of prostaglandins, nitric oxide and calcitonin-gene related peptide in capsaisin afferents. Curr Med Chem. 2012;19:35–42.
  • Evangelista S, Tramontana M, Panerai C, Surrenti C, Renzi D. Gastric lesions induced by concentrated ethanol are associated with a decrease in gastric calcitonin gene-related peptide-like immunoreactivity in rats. Scan J Gastroenterol. 1993;28:1112–1114.
  • Konturek SJ, Brzozowski T, Bielanski W, Schally AV. Role of endogenous gastrin in gastroprotection. Eur J Pharmacol. 1995;278:203–212.
  • Guidobono F, Pagani F, Ticozzi C, Sibilia V, Pecile A, Netti C. Protection by amylin of gastric erosions induced by indomethacin or ethanol in rats. British J Pharmacol. 1997;120:581–586.
  • Guidobono F, Pagani F, Sibilia V, Soglian A, Rapetti D, Netti C. The role of sensory neurons in the antiulcer effect of centrally injected amylin in rat. Peptides. 2000;21:1537–1541.
  • Yang H, Kawakubo K, Tache Y. İntracisternal PYY increases gastric mucosal resistance: role of cholinergic, CGRP, and NO pathways. Am J Physiol. 1999;277:G555–62.
  • Rovati GE, Nicosia S. Lower efficacy: interaction with an inhibitory receptor or partial agonism? Trends Pharmacol Sci. 1994;15:140–144.
  • Pliska V. Models to explain dose-response relationships that exhibit a downturn phase. Trends Pharmacol Sci. 1994;15:178–181.
  • Matsuda H, Li Y, Yoshikawa M. Gastroprotections of escins Ia, Ib, IIa, and IIb on ethanol-induced gastric mucosal lesions in rats. Eur J Pharmacol. 1999;373(1):63–70.
  • Sternini C, Reeve JR, Brecha N. Distribution and characterization of calcitonin gene-related peptide immunoreactivity in the digestive system of normal and capsaicin-treated rats. Gastroenterology. 1987;93:852–862.
  • Sternini C. Enteric and visceral afferent CGRP neurons. Targets of innervation and differential expression patterns. Am NY Acad Sci. 1992;657:170–186.
  • Luo XJ, Li NS, Zhang YS, et al. Vanillyl nonanoate protects rat gastric mucosa from ethanol-induced injury through a mechanism involving calcitonin gene-related peptide. Eur J Pharmacol. 2011;666:211–217.
  • Bremholm L, Hornum M, Henriksen BM, Larsen S, Holst JJ. Glucagon-like peptide-2 increases mesenteric blood flow in humans. Scand J Gastroenterol. 2009;44:314–319.
  • Peskar BM. Neural aspects of prostaglandin involvement in gastric mucosal defense. J Physiol Pharmacol. 2001;52(4):555–568.
  • Whittle BJR, Lopez-Belmonte J, Moncada S. Regulation of gastric mucosal integrity by endogenous nitric oxide: interactions with prostanoids and sensory neuropeptides in the rat. Br J Pharmacol. 1990;99:607–611.
  • Kato K, Yang H, Tache Y. Low doses of TRH analogue act in the dorsal motor nucleus to induce gastric protection in rats. Am J Physiol. 1995;269(38):R1301–7.
  • Guan X, Karpen HE, Stephens J, et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology. 2006;130(3):1019–1021. doi:10.1053/j.gastro.2005.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.