114
Views
0
CrossRef citations to date
0
Altmetric
Articles

The Vagus Nerve and the Celiaco-mesenteric Ganglia Participate in the Feeding Responses Evoked by Non-sulfated Cholecystokinin-8 in Male Sprague Dawley Rats

, , , &
Pages 73-83 | Received 04 Apr 2019, Accepted 18 Sep 2019, Published online: 01 Oct 2019

References

  • Sayegh AI. The role of cholecystokinin receptors in the short-term control of food intake. Prog Mol Biol Transl Sci. 2013;114:277–316. doi:10.1016/B978-0-12-386933-3.00008-X.
  • Beinfeld MC. Biosynthesis and processing of pro CCK: recent progress and future challenges. Life Sci. 2003;72:747–757. doi:10.1016/s0024-3205(02)02330-5.
  • Wank SA, Pisegna JR, de Weerth A. Cholecystokinin receptor family. Molecular cloning, structure, and functional expression in rat, guinea pig, and human. Ann N Y Acad Sci. 1994;713:49–66. doi:10.1111/j.1749-6632.1994.tb44052.x.
  • Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973;84:488–495. doi:10.1037/h0034870.
  • Corwin RL, Gibbs J, Smith GP. Increased food intake after type A but not type B cholecystokinin receptor blockade. Physiol Behav. 1991;50:255–258. doi:10.1016/0031-9384(91)90529-W.
  • Dafalla AI, Mhalhal TR, Washington MC, et al. Non-sulfated cholecystokinin-8 reduces meal size and prolongs the intermeal interval in male Sprague Dawley rats. Neuropeptides. 2019 Feb;73:57-65. doi:10.1016/j.npep.2018.11.003. Epub 2018 Nov 13.
  • Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KJ. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science. 1981;213:1036–1037. doi:10.1126/science.7268408.
  • Brown TA, Washington MC, Metcalf SA, Sayegh AI. The feeding responses evoked by cholecystokinin are mediated by vagus and splanchnic nerves. Peptides. 2011;32:1581–1586. doi:10.1016/j.peptides.2011.06.024.
  • Altschuler SM, Escardo J, Lynn RB, Miselis RR. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology. 1993;104:502–509. doi:10.1016/0016-5085(93)90419-d.
  • Shapiro RE, Miselis RR. The central organization of the vagus nerve innervating the stomach of the rat. J Comp Neurol. 1985;238:473–488. doi:10.1002/cne.902380411.
  • Quinson N, Robbins HL, Clark MJ, Furness JB. Locations and innervation of cell bodies of sympathetic neurons projecting to the gastrointestinal tract in the rat. Arch Histol Cytol. 2001;64:281–294.
  • Isomura G, Iwata S, Chiba M, Shimizu N. Constitution of the greater splanchnic nerve in the rat. Anatomischer Anz. 1985;159:159–171.
  • Hermes SM, Andresen MC, Aicher SA. Localization of TRPV1 and P2X3 in unmyelinated and myelinated vagal afferents in the rat. J Chem Neuroanat. 2016;72:1–7. doi:10.1016/j.jchemneu.2015.12.003.
  • Adelson DW, Wei JY, Yashar M,TJOL, Tache Y. Central autonomic activation by intracisternal TRH analogue excites gastric splanchnic afferent neurons. J Neurophysiol. 1999;81:682–691. doi:10.1152/jn.1999.81.2.682.
  • Broberger C, Holmberg K, Shi TJ, Dockray G, Hokfelt T. Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res. 2001;903:128–140. doi:10.1016/s0006-8993(01)02468-4.
  • Widdop RE, Krstew E, Mercer LD, Carlberg M, Beart PM, Jarrott B. Electrophysiological and autoradiographical evidence for cholecystokinin A receptors on rat isolated nodose ganglia. J Auton Nerv Syst. 1994;46:65–73. doi:10.1016/0165-1838(94)90145-7.
  • Corp ES, McQuade J, Moran TH, Smith GP. Characterization of type A and type B CCK receptor binding sites in rat vagus nerve. Brain Res. 1993;623:161–166. doi:10.1016/0006-8993(93)90024-h.
  • Monnikes H, Lauer G, Arnold R. Peripheral administration of cholecystokinin activates c-fos expression in the locus coeruleus/subcoeruleus nucleus, dorsal vagal complex and paraventricular nucleus via capsaicin-sensitive vagal afferents and CCK-A receptors in the rat. Brain Res. 1997;770:277–288. doi:10.1016/S0006-8993(97)00865-2.
  • Bhatnagar S, Viau V, Chu A, Soriano L, Meijer OC, Dallman MF. A cholecystokinin-mediated pathway to the paraventricular thalamus is recruited in chronically stressed rats and regulates hypothalamic-pituitary-adrenal function. J Neurosci. 2000;20:5564–5573.
  • Gwynne RM, Bornstein JC. Local inhibitory reflexes excited by mucosal application of nutrient amino acids in guinea pig jejunum. Am J Physiol Gastrointestinal Liver Physiol. 2007;292:G1660–1670. doi:10.1152/ajpgi.00580.2006.
  • Dafalla AI, Mhalhal TR, Hiscocks K, Heath J, Sayegh AI. Non-sulfated cholecystokinin-8 increases enteric and hindbrain Fos-like immunoreactivity in male Sprague Dawley rats. Brain Res. 2019;1708:200–206. doi:10.1016/j.brainres.2018.12.019.
  • Hunt JV, Washington MC, Sayegh AI. Exenatide and feeding: possible peripheral neuronal pathways. Peptides. 2012;33:285–290. doi:10.1016/j.peptides.2011.12.009.
  • Wright SA, Washington MC, Garcia C, Sayegh AI. Gastrin releasing peptide-29 requires vagal and splanchnic neurons to evoke satiation and satiety. Peptides. 2012;33:125–131. doi:10.1016/j.peptides.2011.12.004.
  • Washington MC, Williams K, Sayegh AI. The feeding responses evoked by endogenous cholecystokinin are regulated by different gastrointestinal sites. Horm Behav. 2016;78:79–85. doi:10.1016/j.yhbeh.2015.10.019.
  • Dafalla AI, Mhalhal TR, Washington MC, et al. Non-sulfated cholecystokinin-8 reduces meal size and prolongs the intermeal interval in male Sprague Dawley rats. Neuropeptides. 2019;73:57–65. doi:10.1016/j.npep.2018.11.003.
  • Mhalhal TR, Washington MC, Newman K, Heath JC, Sayegh AI. Exogenous glucagon-like peptide-1 reduces body weight and cholecystokinin-8 enhances this reduction in diet-induced obese male rats. Physiol Behav. 2017;179:191–199. doi:10.1016/j.physbeh.2017.06.011.
  • Mhalhal TR, Washington MC, Newman K, Heath JC, Sayegh AI. Infusion of exogenous cholecystokinin-8, gastrin releasing peptide-29 and their combination reduce body weight in diet-induced obese male rats. Appetite. 2017;109:172–181. doi:10.1016/j.appet.2016.12.001.
  • Shively J, Reeve JR Jr., Eysselein VE, Ben-Avram C, Vigna SR, Walsh JH. CCK-5: sequence analysis of a small cholecystokinin from canine brain and intestine. Am J Physiol. 1987;252:G272–275.
  • Rehfeld JF, Agersnap M. Unsulfated cholecystokinin: an overlooked hormone? Regul Pept. 2012;173:1–5. doi:10.1016/j.regpep.2011.09.009.
  • Reubi JC, Koefoed P, Hansen T, et al. Procholecystokinin as marker of human Ewing sarcomas. Clin Cancer Res. 2004;10:5523–5530. doi:10.1158/1078-0432.CCR-1015-03.
  • Mazur M, Furgala A, Jablonski K, Mach T, Thor P. Autonomic nervous system activity in constipation-predominant irritable bowel syndrome patients. Medical science monitor: international medical. J Exp Clin Res. 2012;18:CR493–499.
  • Kasimay O, Cakir B, Devseren E, Yegen BC. Exogenous melatonin delays gastric emptying rate in rats: role of CCK2 and 5-HT3 receptors. J Physiol Pharmacol. 2005;56:543–553.
  • Portincasa P, Di Ciaula A, vanBerge-Henegouwen GP. Smooth muscle function and dysfunction in gallbladder disease. Curr Gastroenterol Rep. 2004;6:151–162.
  • Takahashi T, Owyang C. Mechanism of cholecystokinin-induced relaxation of the rat stomach. J Auton Nerv Syst. 1999;75:123–130. doi:10.1016/s0165-1838(98)00181-7.
  • Giuliani S, Lippe IT, Maggi CA, Meli A. Dual effects of cholecystokinin-octapeptide on duodenal motility of urethane-anesthetized rats. J Pharmacol Exp Ther. 1990;252:1312–1317.
  • Wickbom J, Herrington MK, Permert J, Jansson A, Arnelo U. Gastric emptying in response to IAPP and CCK in rats with subdiaphragmatic afferent vagotomy. Regul Pept. 2008;148:21–25. doi:10.1016/j.regpep.2008.03.010.
  • Young A. Inhibition of gastric emptying. Adv Pharmacol. 2005;52:99–121. doi:10.1016/S1054-3589(05)52006-4.
  • Raybould HE, Holzer HH. Duodenal acid-induced inhibition of gastric motility and emptying in rats. Am J Physiol. 1993;265:G540–546. doi:10.1152/ajpgi.1993.265.3.G540.
  • Lin CW, Miller TR, Both CCK-A. CCK-B/gastrin receptors are present on rabbit vagus nerve. Am J Physiol. 1992;263:R591–595. doi:10.1152/ajpregu.1992.263.3.R591.
  • Mercer JG, Lawrence CB. Selectivity of cholecystokinin (CCK) receptor antagonists, MK-329 and L-365,260, for axonally-transported CCK binding sites on the rat vagus nerve. Neurosci Lett. 1992;137:229–231. doi:10.1016/0304-3940(92)90410-9.
  • Branchereau P, Bohme GA, Champagnat J, et al. CholecystokininA and cholecystokininB receptors in neurons of the brainstem solitary complex of the rat: pharmacological identification. J Pharmacol Exp Ther. 1992;260:1433–1440.
  • Zhang J, Ritter RC. Circulating GLP-1 and CCK-8 reduce food intake by capsaicin-insensitive, nonvagal mechanisms. Am J Physiol Regul Integr Comp Physiol. 2012;302:R264–273. doi:10.1152/ajpregu.00114.2011.
  • Raybould HE, Gayton RJ, Dockray GJ. Mechanisms of action of peripherally administered cholecystokinin octapeptide on brain stem neurons in the rat. J Neurosci. 1988;8:3018–3024.
  • Washington MC, Sayegh AI. Gastrin releasing peptides increase Fos-like immunoreactivity in the enteric nervous system and the dorsal vagal complex. Peptides. 2011;32:1600–1605. doi:10.1016/j.peptides.2011.06.023.
  • Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005;1044:127–131. doi:10.1016/j.brainres.2005.03.011.
  • South EH, Ritter RC. Capsaicin application to central or peripheral vagal fibers attenuates CCK satiety. Peptides. 1988;9:601–612. doi:10.1016/0196-9781(88)90171-4.
  • Knoper SR, Meehan AG, Purnyn S, Coggan JS, Anthony TL, Kreulen DL. CCKA receptors mediate slow depolarizations in cultured mammalian sympathetic neurons. Eur J Pharmacol. 1993;232:65–69. doi:10.1016/0014-2999(93)90729-2.
  • Hokfelt T, Holmberg K, Shi TJ, Broberger C. CCK-ergic mechanisms in sensory systems. Scand J Clin Lab Invest Suppl. 2001;234:69–74.
  • Smith GP. Cholecystokinin and treatment of meal size: proof of principle. Obesity. 2006;14(Suppl 4):168S–170S. doi:10.1038/oby.2006.300.
  • Gulley S, Sharma SK, Moran TH, Sayegh AI. Cholecystokinin-8 increases Fos-like immunoreactivity in the brainstem and myenteric neurons of rats through CCK1 receptors. Peptides. 2005;26:1617–1622. doi:10.1016/j.peptides.2005.02.020.
  • Raboin SJ, Reeve JR Jr., Cooper MS, Green GM, Sayegh AI. Activation of submucosal but not myenteric plexus of the gastrointestinal tract accompanies reduction of food intake by camostat. Regul Pept. 2008;150:73–80. doi:10.1016/j.regpep.2008.06.007.
  • Sayegh AI, Washington MC, Johnson RE, et al. Celiac and the cranial mesenteric arteries supply gastrointestinal sites that regulate meal size and intermeal interval length via cholecystokinin-58 in male rats. Horm Behav. 2015;67:48–53. doi:10.1016/j.yhbeh.2014.11.011.
  • Berthoud HR, Patterson LM. Anatomical relationship between vagal afferent fibers and CCK-immunoreactive entero-endocrine cells in the rat small intestinal mucosa. Acta Anat. 1996;156:123–131. doi:10.1159/000147837.
  • Berthoud HR, Kressel M, Raybould HE, Neuhuber WL. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat Embryol. 1995;191:203–212. doi:10.1007/bf00187819.
  • Dafalla AI, Mhalhal TR, Hiscocks K, Heath J, Sayegh AI. Non-sulfated cholecystokinin-8 increases enteric and hindbrain Fos-like immunoreactivity in male Sprague Dawley rats. Brain Res. 2019 Apr 1;1708:200-206. doi:10.1016/j.brainres.2018.12.019. Epub 2018 Dec 17.
  • Washington MC, Mhalhal TR, Sayegh AI. Cholecystokinin-33, but not cholecystokinin-8 shows gastrointestinal site specificity in regulating feeding behaviors in male rats. Horm Behav. 2016;85:36–42. doi:10.1016/j.yhbeh.2016.08.002.
  • Williams KE, Washington MC, Johnson-Rouse T, et al. Exogenous glucagon-like peptide-1 acts in sites supplied by the cranial mesenteric artery to reduce meal size and prolong the intermeal interval in rats. Appetite. 2016;96:254–259. doi:10.1016/j.appet.2015.09.030.
  • Washington MC, Aglan AH, Sayegh AI. The stomach and/or upper duodenum contain sites of action that control meal size and intermeal interval length by exogenous rat gastrin releasing peptide. Peptides. 2014;55:41–46. doi:10.1016/j.peptides.2014.02.004.
  • Bucinskaite V, Kurosawa M, Lundeberg T. Exogenous cholecystokinin-8 reduces vagal efferent nerve activity in rats through CCK(A) receptors. Br J Pharmacol. 2000;129:1649–1654. doi:10.1038/sj.bjp.0703270.
  • Monnikes H, Lauer G, Bauer C, Tebbe J, Zittel TT, Arnold R. Pathways of Fos expression in locus ceruleus, dorsal vagal complex, and PVN in response to intestinal lipid. Am J Physiol. 1997;273:R2059–2071. doi:10.1152/ajpregu.1997.273.6.R2059.
  • Gay J, Fioramonti J, Garcia-Villar R, Bueno L. Enhanced intestinal motor response to cholecystokinin in post-Nippostrongylus brasiliensis-infected rats: modulation by CCK receptors and the vagus nerve. Neurogastroenterol Motil Off J Eur Gastrointestinal Motil Soc. 2001;13:155–162.
  • Ma KT, Si JQ, Zhang ZQ, et al. Modulatory effect of CCK-8S on GABA-induced depolarization from rat dorsal root ganglion. Brain Res. 2006;1121:66–75. doi:10.1016/j.brainres.2006.08.094.
  • Aras HC, Ekstrom J. Cholecystokinin- and gastrin-induced protein and amylase secretion from the parotid gland of the anaesthetized rat. Regul Pept. 2006;134:89–96. doi:10.1016/j.regpep.2006.01.004.
  • Storr M, Sattler D, Hahn A, Schusdziarra V, Allescher HD. Endogenous CCK depresses contractile activity within the ascending myenteric reflex pathway of rat ileum. Neuropharmacology. 2003;44:524–532. doi:10.1016/s0028-3908(03)00028-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.