211
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Differences in Neuregulin 4 Expression in Children: Effects of Fat Depots and Obese Status

ORCID Icon, , , , , & show all
Pages 190-201 | Received 12 Aug 2019, Accepted 21 Jan 2020, Published online: 27 Jan 2020

References

  • Kwon H, Kim D, Kim JS. Body fat distribution and the risk of incident metabolic syndrome: a longitudinal cohort study. Sci Rep. 2017;7(1):10955. doi:10.1038/s41598-017-09723-y.
  • Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016;8(2):101–109. doi:10.1093/jmcb/mjw014.
  • Zhu Y, Tchkonia T, Stout MB, et al. Inflammation and the depot-specific secretome of human preadipocytes. Obesity (Silver Spring). 2015;23(5):989–999. doi:10.1002/oby.21053.
  • Milic S, Lulic D, Stimac D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J Gastroenterol. 2014;20(28):9330–9337. doi:10.3748/wjg.v20.i28.9330.
  • Harari D, Tzahar E, Romano J, et al. Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene. 1999;18(17):2681–2689. doi:10.1038/sj.onc.1202631.
  • Wang GX, Zhao XY, Meng ZX, et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med. 2014;20(12):1436–1443. doi:10.1038/nm.3713.
  • Rosell M, Kaforou M, Frontini A, et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab. 2014;306(8):E945–964. doi:10.1152/ajpendo.00473.2013.
  • Christian M. Transcriptional fingerprinting of “browning” white fat identifies NRG4 as a novel adipokine. Adipocyte. 2015;4(1):50–54. doi:10.4161/adip.29853.
  • Sidossis LS, Porter C, Saraf MK, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22(2):219–227. doi:10.1016/j.cmet.2015.06.022.
  • Chen Z, Wang GX, Ma SL, et al. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Mol Metab. 2017;6(8):863–872. doi:10.1016/j.molmet.2017.03.016.
  • Nugroho DB, Ikeda K, Barinda AJ, et al. Neuregulin-4 is an angiogenic factor that is critically involved in the maintenance of adipose tissue vasculature. Biochem Biophys Res Commun. 2018;503(1):378–384. doi:10.1016/j.bbrc.2018.06.043.
  • Nugroho DB, Ikeda K, Kajimoto K, Hirata KI, Emoto N. Activation of neuregulin-4 in adipocytes improves metabolic health by enhancing adipose tissue angiogenesis. Biochem Biophys Res Commun. 2018;504(2):427–433. doi:10.1016/j.bbrc.2018.08.197.
  • Corvera S, Gealekman O. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta. 2014;1842(3):463–472. doi:10.1016/j.bbadis.2013.06.003.
  • Michailidou Z, Turban S, Miller E, et al. Increased angiogenesis protects against adipose hypoxia and fibrosis in metabolic disease-resistant 11β-hydroxysteroid dehydrogenase type 1 (HSD1)-deficient mice. J Biol Chem. 2012;287(6):4188–4197. doi:10.1074/jbc.M111.259325.
  • Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol. 2016;23(3):253–259. doi:10.1097/MOH.0000000000000239.
  • Cao J, Ehling M, Marz S, et al. Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis. Nat Commun. 2017;8(1):2210. doi:10.1038/s41467-017-02373-8.
  • Lagendijk AK, Hogan BM. VE-cadherin in vascular development: a coordinator of cell signaling and tissue morphogenesis. Curr Top Dev Biol. 2015;112:325–352.
  • Jiang J, Lin M, Xu Y, et al. Circulating neuregulin 4 levels are inversely associated with subclinical cardiovascular disease in obese adults. Sci Rep. 2016;6:36710. doi:10.1038/srep36710.
  • Dai YN, Zhu JZ, Fang ZY, et al. A case-control study: association between serum neuregulin 4 level and non-alcoholic fatty liver disease. Metabolism. 2015;64(12):1667–1673. doi:10.1016/j.metabol.2015.08.013.
  • Shin KC, Hwang I, Choe SS, et al. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat Commun. 2017;8(1):1087. doi:10.1038/s41467-017-01232-w.
  • Asghar A, Sheikh N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol. 2017;315:18–26. doi:10.1016/j.cellimm.2017.03.001.
  • Al-Shorman A, Al-Domi H, Faqih A. Markers of subclinical atherosclerosis in schoolchildren with obesity and metabolic syndrome. Swiss Med Wkly. 2017;147:w14446.
  • Laiglesia LM, Lorente-Cebrian S, Lopez-Yoldi M, et al. Maresin 1 inhibits TNF-alpha-induced lipolysis and autophagy in 3T3-L1 adipocytes. J Cell Physiol. 2018;233(3):2238–2246. doi:10.1002/jcp.v233.3.
  • Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep. 2015;4(3):363–370. doi:10.1007/s13679-015-0169-4.
  • Sun H, Ma Y, Han D, Pan CW, Xu Y. Prevalence and trends in obesity among China’s children and adolescents, 1985–2010. PLoS One. 2014;9(8):e105469. doi:10.1371/journal.pone.0105469.
  • Tanamas SK, Reddy SP, Chambers MA, et al. Effect of severe obesity in childhood and adolescence on risk of type 2 diabetes in youth and early adulthood in an American Indian population. Pediatr Diabetes. 2018;19(4):622–629. doi:10.1111/pedi.2018.19.issue-4.
  • Li X, Lindquist S, Chen R, et al. Depot-specific messenger RNA expression of 11 beta-hydroxysteroid dehydrogenase type 1 and leptin in adipose tissue of children and adults. Int J Obes (Lond). 2007;31(5):820–828. doi:10.1038/sj.ijo.0803470.
  • McCarthy HD, Jarrett KV, Crawley HF. The development of waist circumference percentiles in British children aged 5.0-16.9 y. Eur J Clin Nutr. 2001;55(10):902–907. doi:10.1038/sj.ejcn.1601240.
  • James WP, Lobstein T. BMI screening and surveillance: an international perspective. Pediatrics. 2009;124(Suppl 1):S42–49. doi:10.1542/peds.2008-3586G.
  • Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2016;118(11):1786–1807. doi:10.1161/CIRCRESAHA.115.306885.
  • Abraham TM, Pedley A, Massaro JM, Hoffmann U, Fox CS. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation. 2015;132(17):1639–1647. doi:10.1161/CIRCULATIONAHA.114.015000.
  • Cox-York K, Wei Y, Wang D, Pagliassotti MJ, Foster MT. Lower body adipose tissue removal decreases glucose tolerance and insulin sensitivity in mice with exposure to high fat diet. Adipocyte. 2015;4(1):32–43. doi:10.4161/21623945.2014.957988.
  • Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med. 2013;34(1):1–11. doi:10.1016/j.mam.2012.10.001.
  • Cinkajzlova A, Mraz M, Haluzik M. Lymphocytes and macrophages in adipose tissue in obesity: markers or makers of subclinical inflammation? Protoplasma. 2017;254(3):1219–1232. doi:10.1007/s00709-017-1082-3.
  • Cai C, Lin M, Xu Y, Li X, Yang S, Zhang H. Association of circulating neuregulin 4 with metabolic syndrome in obese adults: a cross-sectional study. BMC Med. 2016;14(1):165. doi:10.1186/s12916-016-0703-6.
  • Dong B, Wang Z, Arnold LW, Song Y, Wang HJ, Ma J. Simplifying the screening of abdominal adiposity in Chinese children with waist-to-height ratio. Am J Hum Biol. 2016;28(6):945–949. doi:10.1002/ajhb.22894.
  • Olza J, Aguilera CM, Gil-Campos M, et al. Waist-to-height ratio, inflammation and CVD risk in obese children. Public Health Nutr. 2014;17(10):2378–2385. doi:10.1017/S1368980013003285.
  • Vorwieger E, Kelso A, Steinacker JM, Kesztyus D. Cardio-metabolic and socio-environmental correlates of waist-to-height ratio in German primary schoolchildren: a cross-sectional exploration. BMC Public Health. 2018;18(1):280. doi:10.1186/s12889-018-5174-6.
  • Ma Y, Gao M, Liu D. Preventing high fat diet-induced obesity and improving insulin sensitivity through Neuregulin 4 gene transfer. Sci Rep. 2016;6:26242. doi:10.1038/srep26242.
  • Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. doi:10.1152/physrev.00015.2003.
  • Stanford KI, Middelbeek RJ, Goodyear LJ. Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes. 2015;64(7):2361–2368. doi:10.2337/db15-0227.
  • Mao L, Lei J, Schoemaker MH, et al. Long-chain polyunsaturated fatty acids and extensively hydrolyzed casein-induced browning in a Ucp-1 reporter mouse model of obesity. Food Funct. 2018;9(4):2362–2373. doi:10.1039/C7FO01835E.
  • Machida K, Okamatsu-Ogura Y, Shin W, Matsuoka S, Tsubota A, Kimura K. Role of macrophages in depot-dependent browning of white adipose tissue. J Physiol Sci. 2018;68(5):601–608. doi:10.1007/s12576-017-0567-3.
  • Hafidi ME, Buelna-Chontal M, Sanchez-Munoz F, Carbo R. Adipogenesis: a necessary but harmful strategy. Int J Mol Sci. 2019;20(15):3657. doi:10.3390/ijms20153657.
  • Seki T, Hosaka K, Lim S, et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun. 2016;7:12152. doi:10.1038/ncomms12152.
  • An YA, Sun K, Joffin N, et al. Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. Elife. 2017;6. doi:10.7554/eLife.24071.
  • Gealekman O, Guseva N, Hartigan C, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123(2):186–194. doi:10.1161/CIRCULATIONAHA.110.970145.
  • Song MG, Lee HJ, Jin BY, et al. Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity. Mol Metab. 2016;5(11):1113–1120. doi:10.1016/j.molmet.2016.09.001.
  • Phng LK, Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev Cell. 2009;16(2):196–208. doi:10.1016/j.devcel.2009.01.015.
  • Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol. 2004;15(11):2792–2800. doi:10.1097/01.ASN.0000141966.69934.21.
  • Acosta JR, Douagi I, Andersson DP, et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia. 2016;59(3):560–570. doi:10.1007/s00125-015-3810-6.
  • White UA, Tchoukalova YD. Sex dimorphism and depot differences in adipose tissue function. Biochim Biophys Acta. 2014;1842(3):377–392. doi:10.1016/j.bbadis.2013.05.006.
  • Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human adipose tissues - the biology of pear shape. Biol Sex Differ. 2012;3(1):13. doi:10.1186/2042-6410-3-13.
  • Erhardt E, Foraita R, Pigeot I, et al. Reference values for leptin and adiponectin in children below the age of 10 based on the IDEFICS cohort. Int J Obes (Lond). 2014;38(Suppl 2):S32–38. doi:10.1038/ijo.2014.133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.