297
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Involvement of β-catenin in Androgen-induced Mesenchymal Transition of Breast MDA-MB-453 Cancer Cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 114-128 | Received 20 Jul 2020, Accepted 21 Feb 2021, Published online: 11 Mar 2021

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492.
  • Waks AG, Winer EP. Breast cancer treatment: a review. J Am Med Assoc. 2019:321. doi:10.1001/jama.2018.19323.
  • DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics. CA Cancer J Clin. 2019;64(1):52–62.doi:10.3322/caac.21583.
  • Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–2767.doi:10.1172/JCI45014.
  • Jiang YZ, Ma D, Suo C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35(3):428–440.doi:10.1016/j.ccell.2019.02.001.
  • Doane AS, Danso M, Lal P, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006;25(28):3994–4008.doi:10.1038/sj.onc.1209415.
  • Farmer P, Bonnefoi H, Becette V, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–4671.doi:10.1038/sj.onc.1208561.
  • Tilley WD, Marcelli M, Wilson JD, McPhaul MJ. Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci U S A. 1989;86(1):327–331. doi:10.1073/pnas.86.1.327.
  • Hofling M, Hirschberg AL, Skoog L, Tani E, Hägerström T, Von Schoultz B. Testosterone inhibits estrogen/progestogen-induced breast cell proliferation in postmenopausal women. Menopause. 2007;14(2):183–190. doi:10.1097/01.gme.0000232033.92411.51.
  • Peters AA, Ingman WV, Tilley WD, Butler LM. Differential effects of exogenous androgen and an androgen receptor antagonist in the peri- and postpubertal murine mammary gland. Endocrinology. 2011;152(10):3728–3737. doi:10.1210/en.2011-1133.
  • Fioretti FM, Sita-Lumsden A, Bevan CL, Brooke GN. Revising the role of the androgen receptor in breast cancer. J Mol Endocrinol. 2014;52(3):R257–65. doi:10.1530/JME-14-0030.
  • Hickey TE, Robinson JLL, Carroll JS, Tilley WD. Minireview: the androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol. 2012;26(8):1252–1267. doi:10.1210/me.2012-1107.
  • Ogawa Y, Hai E, Matsumoto K, et al. Androgen receptor expression in breast cancer: relationship with clinicopathological factors and biomarkers. Int J Clin Oncol. 2008;13(5):431–435.doi:10.1007/s10147-008-0770-6.
  • Naderi A, Hughes-Davies L. A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia. 2008;10(6):542–548. doi:10.1593/neo.08274.
  • Ni M, Chen Y, Lim E, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011;20(1):119–131.doi:10.1016/j.ccr.2011.05.026.
  • Thakkar A, Wang B, Picon-Ruiz M, Buchwald P, Ince TA. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157(1):77–90. doi:10.1007/s10549-016-3807-y.
  • Wang Y, Romigh T, He X, et al. Differential regulation of PTEN expression by androgen receptor in prostate and breast cancers. Oncogene. 2011;30(42):4327–4338.doi:10.1038/onc.2011.144.
  • Anose BM, Sanders MM. Androgen receptor regulates transcription of the zeb1 transcription factor. Int J Endocrinol. 2011;2011:903918. doi:10.1155/2011/903918.
  • Sun Y, Wang BE, Leong KG, et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen- deprivation therapy. Cancer Res. 2012;72(2):527–536.doi:10.1158/0008-5472.CAN-11-3004.
  • Das R, Gregory PA, Hollier BG, Tilley WD, Selth LA. Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends Mol Med. 2014;20(11):643–651. doi:10.1016/j.molmed.2014.09.004.
  • Jing Y, Cui D, Guo W, et al. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition. Cancer Lett. 2014;348(1–2):135–145.doi:10.1016/j.canlet.2014.03.018.
  • Hara T, Miyazaki H, Lee A, Tran CP, Reiter RE. Androgen receptor and invasion in prostate cancer. Cancer Res. 2008;68(4):1128–1135. doi:10.1158/0008-5472.CAN-07-1929.
  • Wang C, Pan B, Zhu H, et al. Prognostic value of androgen receptor in triple negative breast cancer: a meta-analysis. Oncotarget. 2016;7(29):46482–46491.doi:10.18632/oncotarget.10208.
  • Astvatsaturyan K, Yue Y, Bose S. Androgen receptor positive triple negative breast cancer (TNBC): clinicopathologic and prognostic features. Lab Investig. 2017;13(6):e0197827. doi:10.1371/journal.pone.0197827.
  • Shen Y, Yang F, Zhang W, Song W, Liu Y, Guan X. The Androgen Receptor Promotes Cellular Proliferation by Suppression of G-Protein Coupled Estrogen Receptor Signaling in Triple-Negative Breast Cancer. Cell Physiol Biochem. 2018;43(5):2047–2061. doi:10.1159/000484187.
  • Graham T, Yacoub R, Liu T, Odero-Marah V, Kimbro K, O’Regan R. Reciprocal regulation of ZEB1 and AR in triple negative breast cancer cells. Breast Cancer Res Treat. 2009;123(1):139–147. doi:10.1158/0008-5472.sabcs-3054.
  • Caiazza F, Murray A, Madden SF, et al. Preclinical evaluation of the AR inhibitor enzalutamide in triple-negative breast cancer cells. Endocr Relat Cancer. 2016;23(4):323–334.doi:10.1530/ERC-16-0068.
  • Giovannelli P, Di Donato M, Auricchio F, Castoria G, Migliaccio A. Androgens induce invasiveness of triple negative breast cancer cells through AR/Src/PI3-K Complex assembly. Sci Rep. 2019;9(1):4490. doi:10.1038/s41598-019-41016-4.
  • Al-Othman N, Hammad H, Ahram M. Dihydrotestosterone regulates expression of CD44 via miR-328-3p in triple-negative breast cancer cells. Gene. 2018;675:128–135. doi:10.1016/j.gene.2018.06.094.
  • Liu Y-N, Liu Y, Lee H-J, Hsu Y-H, Chen J-H. Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Mol Cell Biol. 2008;28(23):7096–7108. doi:10.1128/mcb.00449-08.
  • Feng J, Li L, Zhang N, et al. Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms. Oncogene. 2017;36(20):2775–2790.doi:10.1038/onc.2016.432.
  • Montt-Guevara MM, Shortrede JE, Giretti MS, et al. Androgens regulate T47D cells motility and invasion through actin cytoskeleton remodeling. Front Endocrinol (Lausanne). 2016;7:136. doi:10.3389/fendo.2016.00136.
  • Ahram M, Mustafa E, Zaza R, et al. Differential expression and androgen regulation of microRNAs and metalloprotease 13 in breast cancer cells. Cell Biol Int. 2017;41(12):1345–1355.doi:10.1002/cbin.10841.
  • Ahram M, Mustafa E, Abu Hammad S, et al. The cellular and molecular effects of the androgen receptor agonist, Cl-4AS-1, on breast cancer cells. Endocr Res. 2018;43(3):203–214.doi:10.1080/07435800.2018.1455105.
  • Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84. doi:10.1038/s41580-018-0080-4.
  • Culig Z. Epithelial mesenchymal transition and resistance in endocrine-related cancers. Biochim Biophys Acta - Mol Cell Res. 2019;1866(9):1368–1375. doi:10.1016/j.bbamcr.2019.05.003.
  • Nakazawa M, Kyprianou N. Epithelial-mesenchymal-transition regulators in prostate cancer: androgens and beyond. J Steroid Biochem Mol Biol. 2017;166:84–90. doi:10.1016/j.jsbmb.2016.05.007.
  • Yu Z, Huang Z, Lung M. Subcellular fractionation of cultured human cell lines. BIO-PROTOCOL. doi:10.21769/bioprotoc.754.
  • National Institutes of Health. ImageJ, NIH image Processing and Analysis in Java, version1.8.0.
  • Wu Y, Ginther C, Kim J, et al. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res. 2012;10(12):1597–1606.doi:10.1158/1541-7786.MCR-12-0155-T.
  • Linder A, Hagberg Thulin M, Damber JE, Welén K. Analysis of regulator of G-protein signalling 2 (RGS2) expression and function during prostate cancer progression. Sci Rep. 2018;8(1):17259. doi:10.1038/s41598-018-35332-4.
  • Al-Othman NA, Hammad H, Ahram M. Type of serum as a cell culture supplement influences regulation of microrna expression in breast MDA-MB-231 cancer cells. Jordan Med J. 2017;51(4):159–165.
  • Chen B, Dodge ME, Tang W, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5(2):100–107.doi:10.1038/nchembio.137.
  • Zhang S, Qian G, Zhang QQ, et al. MTORC2 suppresses GSK3-dependent snail degradation to positively regulate cancer cell invasion and metastasis. Cancer Res. 2019;79(14):3725–3736.doi:10.1158/0008-5472.CAN-19-0180.
  • Cochrane DR, Bernales S, Jacobsen BM, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16(1):R7.doi:10.1186/bcr3599.
  • Klokk TI, Kurys P, Elbi C, et al. Ligand-Specific Dynamics of the Androgen Receptor at Its Response Element in Living Cells. Mol Cell Biol. 2007;27(5):1823–1843.doi:10.1128/mcb.01297-06.
  • Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE. Structural basis for the nuclear import of the human androgen receptor. J Cell Sci. 2008;121(7):957–968. doi:10.1242/jcs.022103.
  • Tyagi RK, Lavrovsky Y, Ahn SC, Song CS, Chatterjee B, Roy AK. Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol Endocrinol. 2000;14(8):1162–1174. doi:10.1210/mend.14.8.0497.
  • Marcelli M, Stenoien DL, Szafran AT, et al. Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. J Cell Biochem. 2006;98(4):770–788.doi:10.1002/jcb.20593.
  • Schütz SV, Cronauer MV, Rinnab L. Inhibition of glycogen synthase kinase-3β promotes nuclear export of the androgen receptor through a CRM1-dependent mechanism in prostate cancer cell lines. J Cell Biochem. 2010. doi:10.1002/jcb.22500.
  • Truica CI, Byers S, Gelmann EP. β-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res. 2000;60:4709–4713.
  • Mulholland DJ, Cheng H, Reid K, Rennie PS, Nelson CC. The androgen receptor can promote β-catenin nuclear translocation independently of adenomatous polyposis coli. J Biol Chem. 2002;277(20):17933–17943. doi:10.1074/jbc.M200135200.
  • Huang R, Han J, Liang X, et al. Androgen Receptor Expression and Bicalutamide Antagonize Androgen Receptor Inhibit β-Catenin Transcription Complex in Estrogen Receptor-Negative Breast Cancer. Cell Physiol Biochem. 2017;43(6):2212–2225.doi:10.1159/000484300.
  • Pakula H, Xiang D, Li Z. A tale of two signals: AR and WNT in development and tumorigenesis of prostate and mammary gland. Cancers (Basel). 2017;9(2):14. doi:10.3390/cancers9020014.
  • Robinson JLL, MacArthur S, Ross-Innes CS, et al. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. Embo J. 2011;30(15):3019–3027.doi:10.1038/emboj.2011.216.
  • Wang G, Wang J, Sadar MD. Crosstalk between the androgen receptor and β-catenin in castrate-resistant prostate cancer. Cancer Res. 2008;68(23):9918–9927. doi:10.1158/0008-5472.CAN-08-1718.
  • Schweizer L, Rizzo CA, Spires TE, et al. The androgen receptor can signal through Wnt/β-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol. 2008;9:4. doi:10.1186/1471-2121-9-4.
  • Hall RE, Birrell SN, Tilley WD, Sutherland RL-MDA-MB. MDA-MB-453, an androgen-responsive human breast carcinoma cell line with high level androgen receptor expression. Eur J Cancer. 1994;30(4):484–490. doi:10.1016/0959-8049(94)90424-3.
  • Grimaldi M, Boulahtouf A, Prévostel C, Thierry A, Balaguer P, Blache P. A cell model suitable for a high-throughput screening of inhibitors of the Wnt/β-catenin pathway. Front Pharmacol. 2018;9:1160. doi:10.3389/fphar.2018.01160.
  • García-Reyes B, Witt L, Jansen B, et al. Discovery of Inhibitor of Wnt Production 2 (IWP-2) and Related Compounds As Selective ATP-Competitive Inhibitors of Casein Kinase 1 (CK1) δ/ϵ. J Med Chem. 2018;16(9):4087–4102.doi:10.1021/acs.jmedchem.8b00095.
  • Wang Z, Li Z, Wu Q, et al. DNER promotes epithelial–mesenchymal transition and prevents chemosensitivity through the Wnt/β-catenin pathway in breast cancer. Cell Death Dis. 2020;11(8):642.doi:10.1038/s41419-020-02903-1.
  • Yuan Y, Fan Y, Gao Z, et al. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3β signaling pathway. Cancer Biol Med. 2020;17(3):707–725.doi:10.20892/j..2095-3941.2020.0056.
  • Colditz J, Rupf B, Maiwald C, Baniahmad A. Androgens induce a distinct response of epithelial-mesenchymal transition factors in human prostate cancer cells. Mol Cell Biochem. 2016;421(1–2):139–147. doi:10.1007/s11010-016-2794-y.
  • Gujam F, Dickson K, Mccall P, Mcmillan D, Edwards J. The relationship between androgen receptor, components of tumour microenvironment and survival in breast cancer molecular subtypes. Cancer Ther Oncol. 2018;11(3):555814. doi:10.19080/CTOIJ.2018.11.555814.
  • Grigore A, Jolly M, Jia D, Farach-Carson M, Levine H. Tumor budding: the name is EMT. Partial EMT. J Clin Med. 2016;5(5):E51. doi:10.3390/jcm5050051.
  • Aiello NM, Maddipati R, Norgard RJ, et al. EMT subtype influences epithelial plasticity and mode of cell migration developmental cell article emt subtype influences epithelial plasticity and mode of cell migration. Dev Cell. 2018;45(6):681–695.doi:10.1016/j.devcel.2018.05.027.
  • Gunasinghe NPAD, Wells A, Thompson EW, Hugo HJ. Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev. 2012;31(3–4):469–478. doi:10.1007/s10555-012-9377-5.
  • Stankic M, Pavlovic S, Chin Y, et al. TGF-β-Id1 signaling opposes twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep. 2013;5(5):1228–1242.doi:10.1016/j.celrep.2013.11.014.
  • Yamashita N, Tokunaga E, Iimori M, et al. Epithelial Paradox: clinical Significance of Coexpression of E-cadherin and Vimentin With Regard to Invasion and Metastasis of Breast Cancer. Clin Breast Cancer. 2018;18(5):e1003–e1009.doi:10.1016/j.clbc.2018.02.002.
  • Zamil R. The Effect of Membrane Androgen Receptors on Cellular Behavior of Breast Cancer Cell Lines [Thesis]. Amman, Jordan: The University of Jordan; 2014. https://theses.ju.edu.jo/default.aspx.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.