1,572
Views
2
CrossRef citations to date
0
Altmetric
Pediatrics

Clinical assessment of neutrophil gelatinase-associated lipocalin as a potential diagnostic marker for neonatal sepsis: a prospective cohort study

, , &
Pages 1725-1731 | Received 19 Aug 2021, Accepted 15 Jun 2022, Published online: 30 Jun 2022

References

  • Satar M, Engin Arisoy A, Celik IH. Turkish neonatal society guideline on neonatal infections - diagnosis and treatment. Turk Pediatri Ars. 2019;53(sup1):88–100.
  • Bhandari V. Effective biomarkers for diagnosis of neonatal sepsis. J Pediatric Infect Dis Soc. 2014;3(3):234–245.
  • Sharma A, Thakur A, Bhardwaj C, et al. Potential biomarkers for diagnosing neonatal sepsis. Curr Med Res Pract. 2020;10(1):12–17.
  • Tripathi S, Malik G. Neonatal sepsis: past, present and future; a review article. Internet J Med Updat - EJOURNAL. 2010;5(2):45.
  • Zhou H, Cui J, Lu Y, et al. Meta‑analysis of the diagnostic value of serum, plasma and urine neutrophil gelatinase‑associated lipocalin for the detection of acute kidney injury in patients with sepsis. Exp Ther Med. 2021;21(4):386.
  • Parravicini E, Nemerofsky SL, Michelson KA, et al. Urinary neutrophil gelatinase-associated lipocalin is a promising biomarker for late onset culture-positive sepsis in very low birth weight infants. Pediatr Res. 2010;67(6):636–640.
  • Zhang J, Gong F, Li L, et al. The diagnostic value of neutrophil gelatinase-associated lipocalin and hepcidin in bacteria translocation of liver cirrhosis. Int J Clin Exp Med. 2015;8(9):16434–16444.
  • Venge P, Eriksson A-K, Douhan-Håkansson L, et al. Human neutrophil lipocalin in activated whole blood is a specific and rapid diagnostic biomarker of bacterial infections in the respiratory tract. Clin Vaccine Immunol. 2017;24(7):e00064–17.
  • Rodwell RL, Leslie AL, Tudehope DI. Early diagnosis of neonatal sepsis using a hematologic scoring system. J Pediatr. 1988;112(5):761–767.
  • Tollner U. Early diagnosis of septicemia in the newborn. Eur J Pediatr. 1982;138:331–337.
  • Jacobs L, Wong HR. Emerging infection and sepsis biomarkers: will they change current therapies? Expert Rev anti Infect Ther. 2016;14(10):929–941.
  • Drieghe SA, Alsaadi H, Tugirimana PL, et al. A new high-sensitive nephelometric method for assaying serum C-reactive protein based on phosphocholine interaction. Clin Chem Lab Med. 2014;52:861–7.
  • Buoro S, Mecca T, Seghezzi M, et al. Assessment of blood sample stability for complete blood count using the sysmex XN-9000 and mindray BC-6800 analyzers. Rev Bras Hematol Hemoter. 2016;38(3):225–239.
  • Bhandare M, Jagta P, Dhonde S, et al. Study of neutrophil gelatinase associated lipocalin in neonatal sepsis. Int J Healthc Sci. 2018;6:11–15.
  • Iroh Tam P-Y, Bendel CM. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr Res. 2017;82(4):574–583.
  • Fanaroff AA, Martin RJ. 2006. Neonatal-Perinatal medicine: Diseases of the fetus and infant., 8th ed. St. Louis: Mosby
  • Bihorac A, Baslanti TO, Cuenca AG, et al. Acute kidney injury is associated with early cytokine changes after trauma. J Trauma Acute Care Surg. 2013;74(4):1005–1013.
  • Mousa S, Moustafa A, Aly H. Prognostic value of red cell distribution width, platelet parameters, and the hematological scoring system in neonatal sepsis. Egypt J Haematol. 2019;44(3):183.
  • Choudhary DAS. Red blood cell distribution width as a marker of early onset neonatal sepsis: a hospital based analytical study. jmscr. 2019;7(8):59–65.
  • Si Nga H, Medeiros P, Menezes P, et al. Sepsis and AKI in clinical emergency room patients: the role of urinary NGAL. Biomed Res Int. 2015;2015:413751–413758.
  • Brown RE, Rimsza LM, Pastos K, et al. Effects of sepsis on neonatal thrombopoiesis. Pediatr Res. 2008;64(4):399–404.
  • Elshinawy M, Kamal M, Nazir H, et al. Sepsis‐related anemia in a pediatric intensive care unit: transfusion‐associated outcomes. Transfusion. 2020;60(1):S4–S9.
  • Glassford N, Schneider A, Eastwood G, et al. Neutrophil gelatinase-associated lipocalin has a stronger association with serum creatinine than C-reactive protein in patients without sepsis; this relationship is lost in septic patients. Crit Care. 2011;15(S3):P9.
  • Smertka M, Wroblewska J, Suchojad A, et al. Serum and urinary NGAL in septic newborns. Biomed Res Int. 2014;2014:717318–717318.
  • Chang W, Zhu S, Pan C, et al. Predictive utilities of neutrophil gelatinase-associated lipocalin (NGAL) in severe sepsis. Clin Chim Acta. 2018;481:200–206.
  • Liu Z, Yin P, Amathieu R, et al. Application of LC-MS-based metabolomics method in differentiating septic survivors from non-survivors. Anal Bioanal Chem. 2016;408(27):7641–7649.
  • Sorsa A. Diagnostic significance of white blood cell count and C-reactive protein in neonatal sepsis; Asella Referral Hospital, South East Ethiopia. Open Microbiol J. 2018;12:209–217.
  • Dewitte A, Lepreux S, Villeneuve J, et al. 2017. Blood platelets and sepsis pathophysiology: a new therapeutic prospect in critical ill patients? Ann Intensive Care. 7:115. https://doi.org/10.1186/s13613-017-0337-7
  • Jung SM, Kim Y-J, Ryoo SM, et al. Relationship between low hemoglobin levels and mortality in patients with septic shock. Acute Crit Care. 2019;34(2):141–147.