1,719
Views
1
CrossRef citations to date
0
Altmetric
Infectious Diseases

Low BALF CD4 T cells count is associated with extubation failure and mortality in critically ill covid-19 pneumonia

, , , , , , , & show all
Pages 1894-1905 | Received 11 Feb 2022, Accepted 21 Jun 2022, Published online: 04 Jul 2022

References

  • Fernandez-Botran R, Uriarte SM, Arnold FW, et al. Contrasting inflammatory responses in severe and non-severe community-acquired pneumonia. Inflammation. 2014;37(4):1158–1166.
  • Coma E, Méndez-Boo L, Mora N, et al. Divergences on expected pneumonia cases during the COVID-19 epidemic in Catalonia: a time-series analysis of primary care electronic health records covering about 6 million people. BMC Infect Dis. 2021;21(1):283.
  • García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol. 2020;11:1441.
  • Wendel Garcia PD, Fumeaux T, Guerci P, et al. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: initial report of the international RISC-19-ICU prospective observational cohort. EClinicalMedicine. 2020;25:100449.
  • Alharthy A, Aletreby W, Faqihi F, et al. Clinical characteristics and predictors of 28-day mortality in 352 critically ill patients with COVID-19: a retrospective study. J Epidemiol Glob Health. 2021;11(1):98–104.
  • Gamberini L, Tonetti T, Spadaro S, et al. Factors influencing liberation from mechanical ventilation in coronavirus disease 2019: multicenter observational study in fifteen Italian ICUs. J Intensive Care. 2020;8:80.
  • Ionescu F, Zimmer MS, Petrescu I, et al. Extubation failure in critically ill COVID-19 patients: risk factors and impact on in-hospital mortality. J Intensive Care Med. 2021;36(9):1018–1024.
  • Jiang Y, Abudurexiti S, An M-M, et al. Risk factors associated with 28-day all-cause mortality in older severe COVID-19 patients in Wuhan, China: a retrospective observational study. Sci Rep. 2020;10(1):22369.
  • Leoni MLG, Lombardelli L, Colombi D, et al. Prediction of 28-day mortality in critically ill patients with COVID-19: development and internal validation of a clinical prediction model. PLOS One. 2021;16(7):e0254550.
  • Yu H, Luo J, Ni Y, et al. Early prediction of extubation failure in patients with severe pneumonia: a retrospective cohort study. Biosci Rep. 2020;40:BSR20192435.
  • Ciaccio M, Agnello L. Biochemical biomarkers alterations in coronavirus disease 2019 (COVID-19). Diagnosis. 2020;7(4):365–372.
  • Raventós AA, Serpa Neto A. Biomarkers to guide ventilation management and readiness for extubation. Am J Respir Crit Care Med. 2021;203(10):1211–1212.
  • Paats MS, Bergen IM, Hanselaar WEJJ, et al. Local and systemic cytokine profiles in nonsevere and severe community-acquired pneumonia. Eur Respir J. 2013;41(6):1378–1385.
  • Ramirez P, Kot P, Marti V, et al. Diagnostic implications of soluble triggering receptor expressed on myeloid cells-1 in patients with acute respiratory distress syndrome and abdominal diseases: a preliminary observational study. Crit Care. 2011;15(1):R50.
  • Shi J-X, Li J-S, Hu R, et al. Diagnostic value of sTREM-1 in bronchoalveolar lavage fluid in ICU patients with bacterial lung infections: a bivariate meta-analysis. PLOS One. 2013;8(5):e65436.
  • Al-Omari B, McMeekin P, Allen AJ, et al. Systematic review of studies investigating ventilator associated pneumonia diagnostics in intensive care. BMC Pulm Med. 2021;21(1):196.
  • Huh JW, Lim C-M, Koh Y, et al. Diagnostic utility of the soluble triggering receptor expressed on myeloid cells-1 in bronchoalveolar lavage fluid from patients with bilateral lung infiltrates. Crit Care. 2008;12(1):R6.
  • Gibot S, Cravoisy A, Levy B, et al. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med. 2004;350(5):451–458.
  • Guillon A, Arafa EI, Barker KA, et al. Pneumonia recovery reprograms the alveolar macrophage pool. JCI Insight. 2020;5(4):e133042.
  • Knapp S, Leemans JC, Florquin S, et al. Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia. Am J Respir Crit Care Med. 2003;167(2):171–179.
  • Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–844.
  • Kooguchi K, Hashimoto S, Kobayashi A, et al. Role of alveolar macrophages in initiation and regulation of inflammation in Pseudomonas aeruginosa pneumonia. Infect Immun. 1998;66(7):3164–3169.
  • Puren AJ, Feldman C, Savage N, et al. Patterns of cytokine expression in community-acquired pneumonia. Chest. 1995;107(5):1342–1349.
  • Montón C, Torres A, El-Ebiary M, et al. Cytokine expression in severe pneumonia: a bronchoalveolar lavage study. Crit Care Med. 1999;27:1745–1753.
  • Wiedermann FJ, Lederer W. Inflammatory factors in alveolar lavage fluid from severe COVID-19 pneumonia: PCT and IL-6 in epithelial lining fluid. Open Med. 2021;16(1):1132–1133.
  • Wonnenberg B, Jungnickel C, Honecker A, et al. IL-17A attracts inflammatory cells in murine lung infection with P. aeruginosa. Innate Immun. 2016;22(8):620–625.
  • Ritchie ND, Ritchie R, Bayes HK, et al. IL-17 can be protective or deleterious in murine pneumococcal pneumonia. PLoS Pathog. 2018;14(5):e1007099.
  • Orlov M, Dmyterko V, Wurfel MM, et al. Th17 cells are associated with protection from ventilator associated pneumonia. PLOS One. 2017;12(8):e0182966.
  • Tsai HC, Velichko S, Hung LY, et al. IL-17A and Th17 cells in lung inflammation: an update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clin Dev Immunol. 2013;2013:267971.
  • Bielosludtseva K, Pertseva T, Kyreeva T. CD4 as a predictor of systemic inflammatory response and death at severe community-acquired pneumonia. Eur Respir J. 2013;42:4366.
  • Jambo KC, Sepako E, Fullerton DG, et al. Bronchoalveolar CD4+ T cell responses to respiratory antigens are impaired in HIV-infected adults. Thorax. 2011;66(5):375–382.
  • Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–1141.
  • Neill DR, Fernandes VE, Wisby L, et al. T regulatory cells control susceptibility to invasive pneumococcal pneumonia in mice. PLoS Pathog. 2012;8(4):e1002660.
  • Wang Y, Zheng J, Islam MS, et al. The role of CD4(+)FoxP3(+) regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment. Int J Biol Sci. 2021;17(6):1507–1520.
  • Adamzik M, Broll J, Steinmann J, et al. An increased alveolar CD4 + CD25 + Foxp3 + T-regulatory cell ratio in acute respiratory distress syndrome is associated with increased 30-day mortality. Intensive Care Med. 2013;39(10):1743–1751.
  • Mukherjee S, Giamberardino C, Thomas JM, et al. Surfactant protein a modulates induction of regulatory T cells via TGF-β. J Immunol. 2012;188(9):4376–4384.
  • Du X, Meng Q, Sharif A, et al. Surfactant proteins SP-A and SP-D ameliorate pneumonia severity and intestinal injury in a murine model of Staphylococcus aureus pneumonia. Shock. 2016;46(2):164–172.
  • Shi S, Liu X, Li H. Downregulation of caspase-3 alleviates Mycoplasma pneumoniae-induced apoptosis in alveolar epithelial cells. Mol Med Rep. 2017;16(6):9601–9606.
  • Kosai K, Seki M, Tanaka A, et al. Increase of apoptosis in a murine model for severe pneumococcal pneumonia during influenza a virus infection. Jpn J Infect Dis. 2011;64(6):451–457.
  • Baughman RP, Sternberg RI, Hull W, et al. Decreased surfactant protein A in patients with bacterial pneumonia. Am Rev Respir Dis. 1993;147(3):653–657.
  • Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44(Suppl. 2):S27–S72.
  • Feng F, Jiang Y, Yuan M, et al. Association of radiologic findings with mortality in patients with avian influenza H7N9 pneumonia. PLOS One. 2014;9(4):e93885.
  • Hunninghake GW, Gadek J, Kawanami O, et al. Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage. Am J Pathol. 1979;97(1):149–206.
  • Baldwin DR, Wise R, Andrews JM, et al. Microlavage: a technique for determining the volume of epithelial lining fluid. Thorax. 1991;46(9):658–662.
  • Nayak DK, Mendez O, Bowen S, et al. Isolation and in vitro culture of murine and human alveolar macrophages. J Vis Exp. 2018.
  • Saris A, Reijnders TDY, Nossent EJ, et al. Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19. Thorax. 2021;76(10):1010–1019.
  • Baron A, Hachem M, Tran Van Nhieu J, et al. Bronchoalveolar lavage in patients with COVID-19 with invasive mechanical ventilation for acute respiratory distress syndrome. Ann Am Thorac Soc. 2021;18(4):723–726.
  • Dentone C, Vena A, Loconte M, et al. Bronchoalveolar lavage fluid characteristics and outcomes of invasively mechanically ventilated patients with COVID-19 pneumonia in Genoa, Italy. BMC Infect Dis. 2021;21(1):353.
  • Gelarden I, Nguyen J, Gao J, et al. Comprehensive evaluation of bronchoalveolar lavage from patients with severe COVID-19 and correlation with clinical outcomes. Hum Pathol. 2021;113:92–103.
  • Voiriot G, Fajac A, Lopinto J, et al. Bronchoalveolar lavage findings in severe COVID-19 pneumonia. Intern Emerg Med. 2020;15(7):1333–1334.
  • Yao Y, Cao J, Wang Q, et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J Intensive Care. 2020;8:49.
  • Cerda-Mancillas MC, Santiago-Germán D, Andrade-Bravo B, et al. D-Dimer as a biomarker of severity and adverse outcomes in patients with community acquired pneumonia. Arch Med Res. 2020;51(5):429–435.
  • King CS, Sahjwani D, Brown AW, et al. Outcomes of mechanically ventilated patients with COVID-19 associated respiratory failure. PLOS One. 2020;15(11):e0242651.
  • Wong HYF, Lam HYS, Fong AH-T, et al. Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology. 2020;296(2):E72–E78.
  • Yasin R, Gouda W. Chest X-ray findings monitoring COVID-19 disease course and severity. Egypt J Radiol Nucl Med. 2020;51(1):193.
  • Sinha V, Chhaya V, Barot DS, et al. Foreign body in tracheobronchial tree. Indian J Otolaryngol Head Neck Surg. 2010;62(2):168–170.
  • Huffnagle GB, Dickson RP. The bacterial microbiota in inflammatory lung diseases. Clin Immunol. 2015;159(2):177–182.
  • Chaudhry R, Bordoni B. StatPearls. StatPearls Publishing; 2021.
  • Martinez-Sanchez ME, Huerta L, Alvarez-Buylla ER, et al. Role of cytokine combinations on CD4+ T cell differentiation, partial polarization, and plasticity: continuous network modeling approach. Front Physiol. 2018;9:877.
  • Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70(4):326–336.
  • Mock JR, Garibaldi BT, Aggarwal NR, et al. Foxp3+ regulatory T cells promote lung epithelial proliferation. Mucosal Immunol. 2014;7(6):1440–1451.
  • Norton DL, Ceppe A, Tune MK, et al. Bronchoalveolar Tregs are associated with duration of mechanical ventilation in acute respiratory distress syndrome. J Transl Med. 2020;18(1):427.
  • Burns GD, Phillips J, Pangilinan LP, et al. Time to extubation with and without COVID-19 pneumonia. Respir Care. 2021;66:3607976.
  • Funk G-C, Anders S, Breyer M-K, et al. Incidence and outcome of weaning from mechanical ventilation according to new categories. Eur Respir J. 2010;35(1):88–94.
  • Davidson KR, Ha DM, Schwarz MI, et al. Bronchoalveolar lavage as a diagnostic procedure: a review of known cellular and molecular findings in various lung diseases. J Thorac Dis. 2020;12(9):4991–5019.
  • Zeng F, Huang Y, Guo Y, et al. Association of inflammatory markers with the severity of COVID-19: a meta-analysis. Int J Infect Dis. 2020;96:467–474.
  • Pandolfi L, Fossali T, Frangipane V, et al. Broncho-alveolar inflammation in COVID-19 patients: a correlation with clinical outcome. BMC Pulm Med. 2020;20(1):301.
  • Cao C, Gu J, Zhang J. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases. Front Med. 2017;11(2):169–177.
  • Gordon SB, Read RC. Macrophage defences against respiratory tract infections. Br Med Bull. 2002;61:45–61.
  • Jedynak M, Siemiatkowski A, Mroczko B, et al. Soluble TREM-1 serum level can early predict mortality of patients with sepsis, severe sepsis and septic shock. Arch Immunol Ther Exp. 2018;66(4):299–306.
  • Kemp K, Bruunsgaard H, Skinhøj P, et al. Pneumococcal infections in humans are associated with increased apoptosis and trafficking of type 1 cytokine-producing T cells. Infect Immun. 2002;70(9):5019–5025.
  • Reynolds JH, McDonald G, Alton H, et al. Pneumonia in the immunocompetent patient. Br J Radiol. 2010;83(996):998–1009.
  • Vedder V, Schildgen V, Lüsebrink J, et al. Differential cytology profiles in bronchoalveolar lavage (BAL) in COVID-19 patients: a descriptive observation and comparison with other corona viruses, influenza virus, Haemophilus influenzae, and Pneumocystis jirovecii. Medicine. 2021;100(1):e24256.