1,389
Views
2
CrossRef citations to date
0
Altmetric
Ophthalmology

A prospective randomized clinical trial of active-fluidics versus gravity-fluidics system in phacoemulsification for age-related cataract (AGSPC)

, , , , , & show all
Pages 1977-1987 | Received 11 Mar 2022, Accepted 01 Jul 2022, Published online: 15 Jul 2022

References

  • de Silva SR, Riaz Y, Evans JR. Phacoemulsification with posterior chamber intraocular lens versus extracapsular cataract extraction (ECCE) with posterior chamber intraocular lens for age-related cataract. Cochrane Database Syst Rev. 2014;(1):CD008812.DOI:10.1002/14651858.CD008812.pub2.
  • Lundstrom M, Barry P, Henry Y, et al. Evidence-based guidelines for cataract surgery: guidelines based on data in the European registry of quality outcomes for cataract and refractive surgery database. J Cataract Refract Surg. 2012;38(6):1086–1093.
  • Blindness GBD. Vision impairment C, vision loss expert group of the global burden of disease S. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the global burden of disease study. Lancet Glob Health. 2021;9(2):e144–e160.
  • Chang JS, Ng JC, Chan VK, et al. Cataract surgery with a new fluidics control phacoemulsification system in nanophthalmic eyes. Case Rep Ophthalmol. 2016;7(3):218–226.
  • Yuzbasioglu E, Artunay O, Agachan A, et al. Phacoemulsification in patients with nanophthalmos. Can J Ophthalmol. 2009;44(5):534–539.
  • Fishkind WJ. The phaco machine: analysing new technology. Curr Opin Ophthalmol. 2013;24(1):41–46.
  • Ting DSJ, Rees J, Ng JY, et al. Effect of high-vacuum setting on phacoemulsification efficiency. J Cataract Refract Surg. 2017;43(9):1135–1139.
  • Ward MS, Georgescu D, Olson RJ. Effect of bottle height and aspiration rate on postocclusion surge in infiniti and millennium peristaltic phacoemulsification machines. J Cataract Refract Surg. 2008;34(8):1400–1402.
  • Nicoli CM, Dimalanta R, Miller KM. Experimental anterior chamber maintenance in active versus passive phacoemulsification fluidics systems. J Cataract Refract Surg. 2016;42(1):157–162.
  • Zhao Y-Y, Chang P-J, Yu F, et al. Retinal vessel diameter changes induced by transient high perfusion pressure. Int J Ophthalmol. 2014;7(4):602–607.
  • Zhao Y, Li X, Tao A, et al. Intraocular pressure and calculated diastolic ocular perfusion pressure during three simulated steps of phacoemulsification in vivo. Invest Ophthalmol Vis Sci. 2009;50(6):2927–2931.
  • Jensen JD, Boulter T, Lambert NG, et al. Intraocular pressure study using monitored forced-infusion system phacoemulsification technology. J Cataract Refract Surg. 2016;42(5):768–771.
  • Solomon KD, Lorente R, Fanney D, et al. Clinical study using a new phacoemulsification system with surgical intraocular pressure control. J Cataract Refract Surg. 2016;42(4):542–549.
  • Sharif-Kashani P, Fanney D, Injev V. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems. BMC Ophthalmol. 2014;14:96.
  • Gonzalez-Salinas R, Garza-Leon M, Saenz-de-Viteri M, et al. Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics. Int Ophthalmol. 2018;38(5):1907–1913.
  • Malik PK, Dewan T, Patidar AK, et al. Effect of IOP based infusion system with and without balanced phaco tip on cumulative dissipated energy and estimated fluid usage in comparison to gravity fed infusion in torsional phacoemulsification. Eye Vis (Lond). 2017;4:22.
  • Oh LJ, Nguyen CL, Wong E, et al. Prospective study of centurion® versus infiniti® phacoemulsification systems: surgical and visual outcomes. Int J Ophthalmol. 2017;10(11):1698–1702.
  • Zhao Y, Wang D, Nie L, et al. Early changes in retinal microcirculation after uncomplicated cataract surgery using an active-fluidics system. Int Ophthalmol. 2021;41(5):1605–1612.
  • Khokhar S, Sen S, Dhull C. Active-fluidics-based torsional phacoemulsification in diabetic eyes: a prospective interventional study. Indian J Ophthalmol. 2019;67(5):619–624.
  • Jia X, Wei Y, Song H. Optical coherence tomography angiography evaluation of the effects of phacoemulsification cataract surgery on macular hemodynamics in Chinese normal eyes. Int Ophthalmol. 2021;41(12):4175–4185.
  • Luo Y, Li H, Chen W, et al. Active-fluidics versus gravity-fluidics system in phacoemulsification for age-related cataract (AGSPC): study protocol for a prospective, randomised, double-blind, controlled clinical trial. BMJ Open. 2022;12(1):e059062.
  • Davison JA, Chylack LT. Clinical application of the lens opacities classification system III in the performance of phacoemulsification. J Cataract Refract Surg. 2003;29(1):138–145.
  • Sparrow JM, Grzeda MT, Frost NA, et al. Cat-PROM5: a brief psychometrically robust self-report questionnaire instrument for cataract surgery. Eye (Lond). 2018;32(4):796–805.
  • Zhou Y, Zhou M, Wang Y, et al. Short-Term changes in retinal vasculature and layer thickness after phacoemulsification surgery. Curr Eye Res. 2020;45(1):31–37.
  • Garra G, Singer AJ, Taira BR, et al. Validation of the Wong-Baker FACES pain rating scale in pediatric emergency department patients. Acad Emerg Med. 2010;17(1):50–54.
  • Wang HYY. Effects of gravity fluid flow system and active control fluid flow system on cumulative dissipated energy in post-phacoemulsification vision recovery and corneal endothelium. Rec Adv Ophthalmol. 2019;39(1):68–71.
  • Yesilirmak N, Diakonis VF, Sise A, et al. Differences in energy expenditure for conventional and femtosecond-assisted cataract surgery using 2 different phacoemulsification systems. J Cataract Refract Surg. 2017;43(1):16–21.
  • Khokhar S, Aron N, Sen S, et al. Effect of balanced phacoemulsification tip on the outcomes of torsional phacoemulsification using an active-fluidics system. J Cataract Refract Surg. 2017;43(1):22–28.
  • Chen M, Sweeney HW, Luke B, et al. A retrospective randomized study to compare the energy delivered using CDE with different techniques and OZil settings by different surgeons in phacoemulsification. Clin Ophthalmol. 2009;3:401–403.
  • Ye H, Lu Y. Corneal bullous epithelial detachment in diabetic cataract surgery. Optom Vis Sci. 2015;92(7):e161–e164.
  • He L, Cui Y, Tang X, et al. Changes in visual function and quality of life in patients with senile cataract following phacoemulsification. Ann Palliat Med. 2020;9(6):3802–3809.
  • Sorrentino FS, Matteini S, Imburgia A, et al. Torsional phacoemulsification: a pilot study to revise the "harm scale" evaluating the endothelial damage and the visual acuity after cataract surgery. PLoS One. 2017;12(10):e0186975.
  • Hugod M, Storr-Paulsen A, Norregaard JC, et al. Corneal endothelial cell changes associated with cataract surgery in patients with type 2 diabetes mellitus. Cornea. 2011;30(7):749–753.
  • Bourne WM. Biology of the corneal endothelium in health and disease. Eye (Lond). 2003;17(8):912–918.
  • Schweitzer C, Brezin A, Cochener B, FEMCAT study group, et al. Femtosecond laser-assisted versus phacoemulsification cataract surgery (FEMCAT): a multicentre participant-masked randomised superiority and cost-effectiveness trial. Lancet. 2020;395(10219):212–224.
  • Chu CJ, Johnston RL, Buscombe C, United Kingdom Pseudophakic Macular Edema Study Group, et al. Risk factors and incidence of macular edema after cataract surgery: a database study of 81984 eyes. Ophthalmology. 2016;123(2):316–323.
  • Kim SJ, Bressler NM. Optical coherence tomography and cataract surgery. Curr Opin Ophthalmol. 2009;20(1):46–51.
  • Liu J, Liu Q, Yu H, et al. Microvascular changes in macular area after phacoemulsification and its influencing factors assessed by optical coherence tomography angiography. TCRM. 2021; 17:405–414.
  • Zhao Z, Wen W, Jiang C, et al. Changes in macular vasculature after uncomplicated phacoemulsification surgery: optical coherence tomography angiography study. J Cataract Refract Surg. 2018;44(4):453–458.
  • Yu S, Frueh BE, Steinmair D, et al. Cataract significantly influences quantitative measurements on swept-source optical coherence tomography angiography imaging. PLoS One. 2018;13(10):e0204501.
  • Li T, Guadie A, Feng L, et al. Influence of cataract surgery on macular vascular density in patients with myopia using optical coherence tomography angiography. Exp Ther Med. 2020;20(6):1–1.
  • Križanović A, Bjeloš M, Bušić M, et al. Macular perfusion analysed by optical coherence tomography angiography after uncomplicated phacoemulsification: benefits beyond restoring vision. BMC Ophthalmol. 2021;21(1):71.
  • Hilton EJR, Hosking SL, Gherghel D, et al. Beneficial effects of small-incision cataract surgery in patients demonstrating reduced ocular blood flow characteristics. Eye (London). 2005;19(6):670–675.
  • Feng L, Azhati G, Li T, et al. Macular vascular density changes following cataract surgery in diabetic patients: an optical coherence tomography angiography study. J Ophthalmol. 2021;2021:1–7.
  • Pilotto E, Leonardi F, Stefanon G, et al. Early retinal and choroidal OCT and OCT angiography signs of inflammation after uncomplicated cataract surgery. Br J Ophthalmol. 2019;103(7):1001–1007.
  • Miyake K, Ibaraki N. Prostaglandins and cystoid macular edema. Surv Ophthalmol. 2002;47(Suppl 1):S203–S218.
  • Russo A, Costagliola C, Delcassi L, et al. Topical nonsteroidal anti-inflammatory drugs for macular edema. Mediators Inflamm. 2013;2013:476525.
  • Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez X, et al. Interpretation of OCT and OCTA images from a histological approach: clinical and experimental implications. Prog Retin Eye Res. 2020;77:100828.
  • Roberts HW, Wagh VK, Sullivan DL, et al. A randomized controlled trial comparing femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery. J Cataract Refract Surg. 2019;45(1):11–20.
  • Sparrow JM, Grzeda MT, Frost NA, et al. Cataract surgery patient-reported outcome measures: a head-to-head comparison of the psychometric performance and patient acceptability of the Cat-PROM5 and catquest-9SF self-report questionnaires. Eye (Lond). 2018;32(4):788–795.