1,804
Views
3
CrossRef citations to date
0
Altmetric
Infectious Diseases

Metabolic and pharmacological profiling of Penicillium claviforme by a combination of experimental and bioinformatic approaches

, , , , &
Pages 2102-2114 | Received 22 Mar 2022, Accepted 11 Jul 2022, Published online: 09 Aug 2022

References

  • Ashtekar N, Anand G, Thulasiram HV, et al. Genus penicillium: advances and application in the modern era. In: New and future developments in microbial biotechnology and bioengineering. London: Elsevier; 2021. pp. 201–213.
  • Devi R, Kaur T, Guleria G, et al. Fungal secondary metabolites and their biotechnological applications for human health. In: New and future developments in microbial biotechnology and bioengineering. London: Elsevier; 2020. pp. 147–161.
  • Cha Y, Erez T, Reynolds I, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol. 2018;175(2):168–180.
  • Toghueo RMK, Boyom FF. Endophytic penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech. 2020;10(3):1–35.
  • Guo C, Lin X-P, Liao S-R, et al. Two new aromatic polyketides from a deep-sea fungus penicillium sp. SCSIO 06720. Nat Prod Res. 2020;34(9):1197–1205.
  • Ying Y-M, Li L, Yu H-F, et al. Induced production of a new polyketide in penicillium sp. HS-11 by chemical epigenetic manipulation. Nat Prod Res. 2021;35(20):3446–3451.
  • Qi X, Li X, Zhao J, et al. GKK1032C, a new alkaloid compound from the endophytic fungus penicillium sp. CPCC 400817 with activity against methicillin-resistant S. aureus. J Antibiot. 2019;72(4):237–240.
  • Deng M, Liu Y, Huang Y, et al. New bioactive secondary metabolites from the anoectochilus roxburghii endophytic fungus Aspergillus versicolor. Fitoterapia. 2020;143:104532.
  • Feng Q, Yu Y, Tang M, et al. Four new hybrid polyketide-terpenoid metabolites from the penicillium sp. SYPF7381 in the rhizosphere soil of pulsatilla chinensis. Fitoterapia. 2018;125:249–257.
  • Qin D, Shen W, Gao T, et al. Kadanguslactones AE, further oxygenated terpenoids from kadsura angustifolia fermented by a symbiotic endophytic fungus, penicillium ochrochloron SWUKD4. 1850. Phytochemistry. 2020;174:112335.
  • Liu Y, Ding L, Fang F, et al. Penicillilactone A, a novel antibacterial 7-membered lactone derivative from the sponge-associated fungus penicillium sp. LS54. Nat Prod Res. 2019;33(17):2466–2470.
  • Ali T, Pham TM, Ju K-S, et al. Ent-homocyclopiamine B, a prenylated indole alkaloid of biogenetic interest from the endophytic fungus penicillium concentricum. Molecules. 2019;24(2):218.
  • Luo Y, Chen W, Wen L, et al. A new hexanedioic acid analogue from the endophytic fungus penicillium sp. OC-4 of orchidantha chinensis. Chem Nat Compd. 2017;53(5):834–838.
  • Song T, Chen M, Ge Z-W, et al. Bioactive penicipyrrodiether A, an adduct of GKK1032 analogue and phenol a derivative, from a marine-sourced fungus penicillium sp. J Org Chem. 2018;83(21):13395–13401.
  • Xu W-F, Hou X-M, Yao F-H, et al. Xylapeptide A, an antibacterial cyclopentapeptide with an uncommon L-pipecolinic acid moiety from the associated fungus xylaria sp.(GDG-102). Sci Rep. 2017;7(1):1–8.
  • Monteillier A, Allard P-M, Gindro K, et al. Lung cancer chemopreventive activity of patulin isolated from penicillium vulpinum. Molecules. 2018;23(3):636.
  • Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, et al. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol. 2022;106(5-6):1824–1855.
  • Abdel-Razek AS, El-Naggar ME, Allam A, et al. Microbial natural products in drug discovery. Processes. 2020;8(4):470.
  • Frisvad JC, Samson RA. Polyphasic taxonomy of penicillium subgenus penicillium. A guide to identification of food and air-borne terverticillate penicillia and their mycotoxins. Stud Mycol. 2004;49(1):1–174.
  • Afiyatullov S, Leshchenko E, Sobolevskaya M, et al. New 3-[2′(R)-hydroxybutyl]-7-hydroxyphthalide from marine isolate of the fungus penicillium claviforme. Chem Nat Compd. 2015;51(1):111–115.
  • Qin Y-Y, Huang X-S, Liu X-B, et al. Three new andrastin derivatives from the endophytic fungus penicillium vulpinum. Nat Prod Res. 2020;36:1–9.
  • Bajwa R. Scope of first fungal culture bank of Pakistan. Mycopath. 2006;4:41–43.
  • Council NR. Guide for the care and use of laboratory animals (No. 86). US Department of Health and Human Services, Public Health Service, National Institutes of Health; 2010.
  • Ballester A-R, López-Pérez M, de la Fuente B, et al. Functional and pharmacological analyses of the role of penicillium digitatum proteases on virulence. Microorganisms. 2019;7(7):198.
  • Latif S, Weston PA, Barrow RA, et al. Metabolic profiling provides unique insights to accumulation and biosynthesis of key secondary metabolites in annual pasture legumes of mediterranean origin. Metabolites. 2020;10(7):267.
  • Ji M, Yu Z, Chen G, et al. Chemical constituents and biological functions of different extracts of millettia speciosa leaves. JFNR. 2020;8(9):506–515.
  • José C, Zaira H-I, Pilar P. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol. 2002;2(1):1–5.
  • Wong SP, Leong LP, Koh JHW. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006;99(4):775–783.
  • Shahid M, Subhan F, Ahmad N, et al. The flavonoid 6-methoxyflavone allays cisplatin-induced neuropathic allodynia and hypoalgesia. Biomed Pharmacother. 2017;95:1725–1733.
  • Jothy SL, Zakaria Z, Chen Y, et al. Acute oral toxicity of methanolic seed extract of cassia fistula in mice. Molecules. 2011;16(6):5268–5282.
  • Dong L, Yuan C, Orlando BJ, et al. Fatty acid binding to the allosteric subunit of cyclooxygenase-2 relieves a tonic inhibition of the catalytic subunit. J Biol Chem. 2016;291(49):25641–25655.
  • Ahmad N, Rehman AU, Badshah SL, et al. Molecular dynamics simulation of zika virus NS5 RNA dependent RNA polymerase with selected novel non-nucleoside inhibitors. J Mol Struct. 2020;1203:127428.
  • Ahmad N, Farman A, Badshah SL, et al. Molecular modeling, simulation and docking study of Ebola virus glycoprotein. J Mol Graph Model. 2017;72:266–271.
  • George TK, Devadasan D, Jisha M. Chemotaxonomic profiling of penicillium setosum using high-resolution mass spectrometry (LC-Q-ToF-MS). Heliyon. 2019;5(9):e02484.
  • Rajesh YBRD. Quinoline heterocycles: synthesis and bioactivity. In: Heterocycles-synthesis and biological activities. IntechOpen; 2018. 1–18, DOI: 10.5772/intechopen.81239.
  • Marella A, Tanwar OP, Saha R, et al. Quinoline: a versatile heterocyclic. Saudi Pharm J. 2013;21(1):1–12.
  • Shim S, Becker R. Effect of monoamine oxidase a and B inhibition on the uptake and metabolism of serotonin within serotonergic neurons of rat brain. J Psychopharmacol. 1993;7(2):181–189.
  • Cheng-Sánchez I, Sarabia F. Chemistry and biology of bioactive glycolipids of marine origin. Mar Drugs. 2018;16(9):294.
  • Hammami S, Bergaoui A, Boughalleb N, et al. Antifungal effects of secondary metabolites isolated from marine organisms collected from the Tunisian Coast. CR Chim. 2010;13(11):1397–1400.
  • Choudhary M, Batool I, Shah S, et al. Microbial hydroxylation of pregnenolone derivative and cholinesterase inhibitory activity. Chem Pharm Bull. 2005;53(11):1455–1459.
  • Fan J, Liu K, Ju Y, et al. Total scanning fluorescence characteristics of coals and implication to coal rank evaluation. J Geol Res. 2012;2012:1–6.
  • Jessa M, Nazar M, Płaźnik A. Anxiolytic-like action of intra-hippocampally administered NMDA antagonists in rats. Polish J Pharmacol. 1995;47(1):81–84.
  • Luo H-Y, Guo R-X, Yu X-K, et al. Chemical constituents from the seeds of cassia obtusefolia and their in vitro α-glucosidase inhibitory and antioxidant activities. Bioorg Med Chem Lett. 2019;29(13):1576–1579.
  • Mbatchou VC, Tchouassi DP, Dickson RA, et al. Mosquito larvicidal activity of cassia Tora seed extract and its key anthraquinones aurantio-obtusin and obtusin. Parasites Vectors. 2017;10(1):1–8.
  • Maria SG, Anca D, Elena GM, et al. Azo compounds with antimicrobial activity. In: 14th international conference on synthetic organic chemistry; ECSOC-14, 1-30; 2010.
  • Erhorn S. Amobarbital; Vol. 4. Elsevier; 2007. p. 1–5
  • Qin Z, Zhang B, Yang J, et al. The efflux mechanism of fraxetin-O-Glucuronides in UGT1A9-transfected HeLa cells: identification of multidrug resistance-associated proteins 3 and 4 (MRP3/4) as the important contributors. Front Pharmacol. 2019;10:496.
  • Malak LG, Ibrahim MA, Bishay DW, et al. Antileishmanial metabolites from Geosmithia langdonii. J Nat Prod. 2014;77(9):1987–1991.
  • Kumar A, Prakash A, Dogra S. Centella asiatica attenuates D-galactose-induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Int J Alzheimer’s Dis. 2011;2011:1–9.
  • Anadón A, Martínez-Larrañaga M-R, Valerio LG. Onchidal and fasciculins. In: Handbook of toxicology of chemical warfare agents. London: Elsevier; 2020. pp. 455–466.
  • Szulc J, Okrasa M, Majchrzycka K, et al. Microbiological and toxicological hazards in sewage treatment plant bioaerosol and dust. Toxins. 2021;13(10):691.
  • Kozlovsky A, Kochkina G, Zhelifonova V, et al. Secondary metabolites of the genus penicillium from undisturbed and anthropogenically altered Antarctic habitats. Folia Microbiol. 2020;65(1):95–102.
  • Frisvad J. A critical review of producers of small lactone mycotoxins: patulin, penicillic acid and moniliformin. World Mycotoxin J. 2018;11(1):73–100.
  • Ismaiel AA, Papenbrock J. Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture. 2015;5(3):492–537.
  • Ghanbari T, Seid Mohammadkhani H, Babaeizad V. Identification of some secondary metabolites produced by four penicillium species. Mycologia Iranica. 2014;1(2):107–113.
  • Jeleń HH, Majcher M, Zawirska-Wojtasiak R, et al. Determination of geosmin, 2-methylisoborneol, and a musty-earthy odor in wheat grain by SPME-GC-MS, profiling volatiles, and sensory analysis. J Agric Food Chem. 2003;51(24):7079–7085.
  • Börjesson TS, Stöllman UM, Schnürer JL. Off-odorous compounds produced by molds on oatmeal agar: identification and relation to other growth characteristics. J Agric Food Chem. 1993;41(11):2104–2111.
  • Liu F, Xiang M, Guo Y, et al. Culture conditions and nutrition requirements for the mycelial growth of isaria farinosa (hypocreales: cordycipitaceae) and the altitude effect on its growth and metabolome. Sci Rep. 2018;8(1):1–15.
  • Koul M, Singh S. Penicillium spp.: prolific producer for harnessing cytotoxic secondary metabolites. Anticancer Drugs. 2017;28(1):11–30.
  • An C-Y, Li X-M, Li C-S, et al. Prenylated indolediketopiperazine peroxides and related homologues from the marine sediment-derived fungus penicillium brefeldianum SD-273. Mar Drugs. 2014;12(2):746–756.
  • Wang M-H, Li X-M, Li C-S, et al. Secondary metabolites from penicillium pinophilum SD-272, a marine sediment-derived fungus. Mar Drugs. 2013;11(6):2230–2238.
  • Hayashi H, Nakatani T, Inoue Y, et al. New dihydroquinolinone toxic to artemia salina produced by penicillium sp. NTC-47. Biosci Biotechnol Biochem. 1997;61(5):914–916.
  • Teixeira MF, Martins MS, Da Silva JC, et al. Amazonian biodiversity: pigments from aspergillus and penicillium-characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharm. 2012;6(3):300–311.
  • Rauf A, Ben Hadda T, Uddin G, et al. Fatty acid composition and biological activities of oily fractions from pistacia integerrima roots. Chem Nat Compd. 2017;53(5):830–833.
  • Vitale GA, Coppola D, Esposito FP, et al. Antioxidant molecules from marine fungi: methodologies and perspectives. Antioxidants. 2020;9(12):1183.
  • Chandra P, Arora DS. Antioxidant potential of Penicillium citrinum and its optimization through different statistical approaches. Free Radicals Antioxid. 2011;1(4):48–55.
  • Han C. A comparison of antinociceptive activity of mycelial extract from three species of fungi of basidiomycetes. TOALTMEDJ. 2009;1(1):73–77.
  • de Barros BS, da Silva JP, de Souza Ferro JN, et al. Methanol extract from mycelium of endophytic fungus rhizoctonia sp. induces antinociceptive and anti-inflammatory activities in mice. J Nat Med. 2011;65(3–4):526–531.
  • Mazumder K, Ruma YN, Akter R, et al. Identification of bioactive metabolites and evaluation of in vitro anti-inflammatory and in vivo antinociceptive and antiarthritic activities of endophyte fungi isolated from elaeocarpus floribundus blume. J Ethnopharmacol. 2021;273:113975.
  • Ramezani M, Hosseinzadeh H, Samizadeh S. Antinociceptive effects of zataria multiflora boiss fractions in mice. J Ethnopharmacol. 2004;91(1):167–170.
  • Moss MO. Mycotoxin review-1. aspergillus and penicillium. MYT. 2002;16(03):116–119.
  • Schuster E, Dunn-Coleman N, Frisvad J, et al. On the safety of Aspergillus niger–a review. Appl Microbiol Biotechnol. 2002;59(4–5):426–435.
  • Boussabbeh M, Salem IB, Neffati F, et al. Crocin prevents patulin‐induced acute toxicity in cardiac tissues via the regulation of oxidative damage and apoptosis. J Biochem Mol Toxicol. 2015;29(10):479–488.
  • Arnold D, Scott P, McGuire P, et al. Acute toxicity studies on roquefortine and PR toxin, metabolites of penicillium roqueforti, in the mouse. Food Cosmet Toxicol. 1978;16(4):369–371.
  • Cole R, Kirksey J, Moore J, et al. Tremorgenic toxin from penicillium verruculosum. Appl Microbiol. 1972;24(2):248–250.
  • Sopandi T, Wardah W. Sub-Acute toxicity of pigment derived from penicillium resticulosum in mice. Microbiol Indones. 2012;6(1):35–36.
  • Hymery N, Vasseur V, Coton M, et al. Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf. 2014;13(4):437–456.