5,302
Views
3
CrossRef citations to date
0
Altmetric
Gastroenterology & Hepatology

The association between non-alcoholic fatty liver disease (NAFLD) and advanced fibrosis with blood selenium level based on the NHANES 2017-2018

, , &
Pages 2258-2267 | Received 18 Jun 2022, Accepted 01 Aug 2022, Published online: 17 Aug 2022

References

  • Estes C, Razavi H, Loomba R, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease[J]. Hepatology. 2018;67(1):123–133.
  • Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol. 2021;18(4):223–238.
  • Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med. 2018;24(7):908–922.
  • Pierantonelli I, Svegliati-Baroni G. Nonalcoholic fatty liver disease: Basic pathogenetic mechanisms in the progression from NAFLD to NASH[J]. Transplantation. 2019;103(1):e1–e13.
  • Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis[J]. Clin Liver Dis. 2009;13(4):511–531.
  • Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med. 2019;65:37–55.
  • Ekstedt M, Hagstrom H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up[J]. Hepatology. 2015;61(5):1547–1554.
  • Rayman MP. Selenium and human health[J]. Lancet. 2012;379(9822):1256–1268.
  • Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease[J. Antioxid Redox Signal. 2011;14(7):1337–1383.
  • Hossain A, Skalicky M, Brestic M, et al. Selenium biofortification: Roles, mechanisms, responses and prospects[J]. Molecules. 2021;26(4):881.
  • Kryukov GV, Castellano S, Novoselov SV, et al. Characterization of mammalian selenoproteomes[J]. Science. 2003;300(5624):1439–1443.
  • Suzuki Y, Hashiura Y, Matsumura K, et al. Dynamic pathways of selenium metabolism and excretion in mice under different selenium nutritional statuses[J]. Metallomics. 2010;2(2):126–132.
  • Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles[J]. Physiol Rev. 2014;94(3):739–777.
  • Zhou J, Huang K, Lei XG. Selenium and diabetes–evidence from animal studies[J]. Free Radic Biol Med. 2013;65:1548–1556.
  • Polyzos SA, Kountouras J, Goulas A, et al. Selenium and selenoprotein P in nonalcoholic fatty liver disease[J]. Hormones (Athens). 2020;19(1):61–72.
  • Wang X, Seo YA, Park SK. Serum selenium and non-alcoholic fatty liver disease (NAFLD) in U.S. adults: National health and nutrition examination survey (NHANES) 2011-2016[J.]. Environ Res. 2021;197:111190.
  • Yang Z, Yan C, Liu G, et al. Plasma selenium level and nonalcoholic fatty liver disease in chinese adults: a cross-sectional analysis[J]. Sci Rep. 2016;6:37288.
  • Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity[J]. Hepatology. 2004;40(6):1387–1395.
  • Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD single topic conference[J]. Hepatology. 2003;37(5):1202–1219.
  • Sorrentino P, Tarantino G, Conca P, et al. Silent non-alcoholic fatty liver disease-a clinical-histological study[J]. J Hepatol. 2004;41(5):751–757.
  • Bedogni G, Bellentani S, Miglioli L, et al. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population[J]. BMC Gastroenterol. 2006;6(1):33.
  • Papatheodoridi M, Cholongitas E. Diagnosis of non-alcoholic fatty liver disease (NAFLD): current concepts[J]. Curr Pharm Des. 2018;24(38):4574–4586.
  • Reja M, Makar M, Visaria A, et al. Increased serum selenium level are associated with reduced risk of advanced liver fibrosis and all-cause mortality in NAFLD patients: National health and nutrition examination survey (NHANES) III[J]. Ann Hepatol. 2020;19(6):635–640.
  • Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease[J]. Metabolism. 2020;111S:154320.
  • Vallet-Pichard A, Mallet V, Nalpas B, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest[J]. Hepatology. 2007;46(1):32–36.
  • Boursier J, Vergniol J, Guillet A, et al. Diagnostic accuracy and prognostic significance of blood fibrosis tests and liver stiffness measurement by FibroScan in non-alcoholic fatty liver disease[J]. J Hepatol. 2016;65(3):570–578.
  • Petta S, Wong VW, Camma C, et al. Serial combination of non-invasive tools improves the diagnostic accuracy of severe liver fibrosis in patients with NAFLD[J]. Aliment Pharmacol Ther. 2017;46(6):617–627.
  • Hashemi SA, Alavian SM, Gholami-Fesharaki M. Assessment of transient elastography (FibroScan) for diagnosis of fibrosis in non-alcoholic fatty liver disease: a systematic review and Meta-analysis[J]. Caspian J Intern Med. 2016;7(4):242–252.
  • Pu K, Wang Y, Bai S, et al. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: a systematic review and Meta-analysis[J]. BMC Gastroenterol. 2019;19(1):51.
  • Leitao J, Carvalhana S, Silva AP, et al. No evidence for lower level of serum vitamin D in the presence of hepatic steatosis. A study on the portuguese general population[J]. Int. J. Med. Sci. 2018;15(14):1778–1786.
  • de Ledinghen V, Hiriart JB, Vergniol J, et al. Controlled attenuation parameter (CAP) with the XL probe of the fibroscan((R)): a comparative study with the M probe and liver biopsy[J]. Dig Dis Sci. 2017;62(9):2569–2577.
  • Balakrishnan M, El-Serag HB, Kanwal F, et al. Shiftwork is not associated with increased risk of NAFLD: Findings from the national health and nutrition examination survey[J]. Dig Dis Sci. 2017;62(2):526–533.
  • Wong VW, Vergniol J, Wong GL, et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease[J]. Hepatology. 2010;51(2):454–462.
  • Harrison SA, Oliver D, Arnold HL, et al. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease[J. ]. Gut. 2008;57(10):1441–1447.
  • Carson AP, Reynolds K, Fonseca VA, et al. Comparison of A1C and fasting glucose criteria to diagnose diabetes among U.S. adults[J]. Diabetes Care. 2010;33(1):95–97.
  • Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome[J]. Hippokratia. 2009;13(1):9–19.
  • Huang TD, Behary J, Zekry A. Non-alcoholic fatty liver disease: a review of epidemiology, risk factors, diagnosis and management[J]. Intern Med J. 2020;50(9):1038–1047.
  • Romero-gomez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise[J]. J Hepatol. 2017;67(4):829–846.
  • Kim NH, Jung YS, Hong HP, et al. Association between cotinine-verified smoking status and risk of nonalcoholic fatty liver disease[J]. Liver Int. 2018;38(8):1487–1494.
  • Azzalini L, Ferrer E, Ramalho LN, et al. Cigarette smoking exacerbates nonalcoholic fatty liver disease in obese rats[J]. Hepatology. 2010;51(5):1567–1576.
  • Farzanegi P, Dana A, Ebrahimpoor Z, et al. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): roles of oxidative stress and inflammation[J]. Eur J Sport Sci. 2019;19(7):994–1003.
  • Gupta M, Gupta S. An overview of selenium uptake, metabolism, and toxicity in plants[J]. Front Plant Sci. 2016;7:2074.
  • Zoidis E, Seremelis I, Kontopoulos N, et al. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins[J]. Antioxidants (Basel). 2018;7(5):66.
  • Wang Y, Liu B, Wu P, et al. Dietary selenium alleviated mouse liver oxidative stress and NAFLD induced by obesity by regulating the KEAP1/NRF2 pathway[J]. Antioxidants (Basel). 2022;11(2):349.
  • Mousavi SN, Faghihi A, Motaghinejad M, et al. Zinc and selenium Co-supplementation reduces some lipid peroxidation and angiogenesis markers in a rat model of NAFLD-Fed high fat diet[J]. Biol Trace Elem Res. 2018;181(2):288–295.
  • Miyata M, Matsushita K, Shindo R, et al. Selenoneine ameliorates hepatocellular injury and hepatic steatosis in a mouse model of NAFLD[J]. Nutrients. 2020;12(6):1898.
  • Wu J, Zeng C, Yang Z, et al. Association between dietary selenium intake and the prevalence of nonalcoholic fatty liver disease: a Cross-Sectional study[J]. J Am Coll Nutr. 2020;39(2):103–111.
  • Liu Y, Zhao H, Zhang Q, et al. Prolonged dietary selenium deficiency or excess does not globally affect selenoprotein gene expression and/or protein production in various tissues of pigs[J]. J Nutr. 2012;142(8):1410–1416.
  • Zhao Z, Barcus M, Kim J, et al. High dietary selenium intake alters lipid metabolism and protein synthesis in liver and muscle of pigs[J]. J. Nutr. 2016;146(9):1625–1633.
  • McClung JP, Roneker CA, Mu W, et al. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase[J]. Proc. Natl. Acad. Sci. U.S.A. 2004;101(24):8852–8857.
  • Mueller AS, Bosse AC, Most E, et al. Regulation of the insulin antagonistic protein tyrosine phosphatase 1B by dietary Se studied in growing rats[J]. J Nutr Biochem. 2009;20(4):235–247.
  • Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story[J]. Gut. 2015;64(5):830–841.
  • Han J, Liang H, Yi J, et al. Long-Term Selenium-Deficient diet induces liver damage by altering hepatocyte ultrastructure and MMP1/3 and TIMP1/3 expression in growing rats[J]. Biol Trace Elem Res. 2017;175(2):396–404.
  • Shen XH, Cheng WF, Li XH, et al. Effects of dietary supplementation with vitamin E and selenium on rat hepatic stellate cell apoptosis[J]. World J Gastroenterol. 2005;11(32):4957–4961.
  • Liu Y, Liu Q, Ye G, et al. Protective effects of selenium-enriched probiotics on carbon tetrachloride-induced liver fibrosis in rats[J]. J. Agric. Food Chem. 2015;63(1):242–249.
  • Liu Y, Liu Q, Hesketh J, et al. Protective effects of selenium-glutathione-enriched probiotics on CCl4-induced liver fibrosis[J]. J Nutr Biochem. 2018;58:138–149.
  • Luan D, Zhao Z, Xia D, et al. Hydrogen selenide, a vital metabolite of sodium selenite, uncouples the sulfilimine bond and promotes the reversal of liver fibrosis[J]. Sci China Life Sci. 2021;64(3):443–451.