2,697
Views
0
CrossRef citations to date
0
Altmetric
Neurology

Neurophysiology tools to lower the stroke onset to treatment time during the golden hour: microwaves, bioelectrical impedance and near infrared spectroscopy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2646-2659 | Received 24 Mar 2022, Accepted 09 Sep 2022, Published online: 25 Sep 2022

References

  • Katan M, Luft A. Global burden of stroke. Semin Neurol. 2018;38(2):208–211.
  • Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American heart association. Circulation. 2021;143(8):e254–e743.
  • Luengo-Fernandez R, Violato M, Candio P, et al. Economic burden of stroke across Europe: a population-based cost analysis. Eur Stroke J. 2020;5(1):17–25.
  • Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–e418.
  • Lees KR, Bluhmki E, von Kummer R, et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 2010;375(9727):1695–1703.
  • Saver JL. Time is brain—quantified. Stroke. 2006;37(1):263–266.
  • Risitano A, Toni D. Time is brain: timing of revascularization of brain arteries in stroke. Eur Heart J Suppl. 2020;22:L155–L159.
  • Saver JL, Fonarow GC, Smith EE, et al. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA. 2013;309(23):2480–2488.
  • Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–1329.
  • Albers GW, Clark WM, Madden KP, et al. ATLANTIS trial: results for patients treated within 3 hours of stroke onset. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke. Stroke. 2002;33(2):493–496.
  • Marler JR. NINDS clinical trials in stroke: lessons learned and future directions. Stroke. 2007;38(12):3302–3307.
  • Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299–309.
  • Adeoye O, Hornung R, Khatri P, et al. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42(7):1952–1955.
  • Nasr DM, Brinjikji W, Cloft HJ, et al. Utilization of intravenous thrombolysis is increasing in the United States. Int J Stroke. 2013;8(8):681–688.
  • Grotta JC, Burgin WS, El-Mitwalli A, et al. Intravenous tissue-type plasminogen activator therapy for ischemic stroke: Houston experience 1996 to 2000. Arch Neurol. 2001;58(12):2009–2013.
  • Rost NS, Smith EE, Pervez MA, et al. Predictors of increased intravenous tissue plasminogen activator use among hospitals participating in the Massachusetts primary stroke service program. Circ Cardiovasc Qual Outcomes. 2012;5(3):314–320.
  • Mowla A, Doyle J, Lail NS, et al. Delays in door-to-needle time for acute ischemic stroke in the emergency department: a Comprehensive Stroke Center experience. J Neurol Sci. 2017;376:102–105.
  • Albers GW, Bates VE, Clark WM, et al. Intravenous tissue-type plasminogen activator for treatment of acute stroke: the standard treatment with alteplase to reverse stroke (STARS) study. JAMA. 2000;283(9):1145–1150.
  • Strbian D, Michel P, Ringleb P, et al. Relationship between onset-to-door time and door-to-thrombolysis time: a pooled analysis of 10 dedicated stroke centers. Stroke. 2013;44(10):2808–2813.
  • Berge E, Whiteley W, Audebert H, et al. European stroke organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J. 2021;6(1):I–LXII.
  • Turc G, Bhogal P, Fischer U, et al. European stroke organisation (ESO) – European Society for minimally invasive neurological therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke. J Neurointerv Surg. 2019:1–30.
  • Jauch EC, Saver JL, Adams HP, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.
  • Demaerschalk BM, Kleindorfer DO, Adeoye OM, et al. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(2):581–641.
  • ATLANTIS T. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 2004;363(9411):768–774.
  • Lee EJ, Kim SJ, Bae J, et al. Impact of onset-to-door time on outcomes and factors associated with late hospital arrival in patients with acute ischemic stroke. PLOS One. 2021;16(3):e0247829.
  • Azzimondi G, Bassein L, Fiorani L, et al. Variables associated with hospital arrival time after stroke: effect of delay on the clinical efficiency of early treatment. Stroke. 1997;28(3):537–542.
  • Investigators C. Prioritizing interventions to improve rates of thrombolysis for ischemic stroke. Neurology. 2005;64(4):654–659.
  • Kleindorfer DO, Broderick JP, Khoury J, et al. Emergency department arrival times after acute ischemic stroke during the 1990s. Neurocrit Care. 2007;7(1):31–35.
  • Koennecke HC, Nohr R, Leistner S, et al. Intravenous tPA for ischemic stroke team performance over time, safety, and efficacy in a single-center, 2-year experience. Stroke. 2001;32(5):1074–1078.
  • Kothari R, Jauch E, Broderick J, et al. Acute stroke: delays to presentation and emergency department evaluation. Ann Emerg Med. 1999;33(1):3–8.
  • Majersik JJ, Smith MA, Zahuranec DB, et al. Population-based analysis of the impact of expanding the time window for acute stroke treatment. Stroke. 2007;38(12):3213–3217.
  • Owe JF, Sanaker PS, Naess H, et al. The yield of expanding the therapeutic time window for tPA. Acta Neurol Scand. 2006;114(5):354–357.
  • Qureshi AI, Kirmani JF, Sayed MA, et al. Time to hospital arrival, use of thrombolytics, and in-hospital outcomes in ischemic stroke. Neurology. 2005;64(12):2115–2120.
  • Gariel F, Lapergue B, Bourcier R, et al. Mechanical thrombectomy outcomes with or without intravenous thrombolysis: insight from the ASTER randomized trial. Stroke. 2018;49(10):2383–2390.
  • Gierhake D, Weber JE, Villringer K, et al. [Mobile CT: technical aspects of prehospital stroke imaging before intravenous thrombolysis]. Rofo. 2013;185(1):55–59.
  • Sheth KN, Mazurek MH, Yuen MM, et al. Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol. 2021;78(1):41–47.
  • Cooley CZ, McDaniel PC, Stockmann JP, et al. A portable scanner for magnetic resonance imaging of the brain. Nat Biomed Eng. 2021;5(3):229–239.
  • Di Lazzaro V. Biological effects of non-invasive brain stimulation. Handb Clin Neurol. 2013;116:367–374.
  • Rossi S, Antal A, Bestmann S, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert guidelines. Clin Neurophysiol. 2021;132(1):269–306.
  • di Biase L, Falato E, Caminiti ML, et al. Focused ultrasound (FUS) for chronic pain management: approved and potential applications. Neurol Res Int. 2021;2021:8438498.
  • di Biase L, Falato E, Di Lazzaro V. Transcranial focused ultrasound (tFUS) and transcranial unfocused ultrasound (tUS) neuromodulation: from theoretical principles to stimulation practices. Front Neurol. 2019;10:549.
  • Assenza G, Capone F, di Biase L, et al. Oscillatory activities in neurological disorders of elderly: biomarkers to target for neuromodulation. Front Aging Neurosci. 2017;9:189.
  • Chen R, Cros D, Curra A, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2008;119(3):504–532.
  • Lefaucheur J-P, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018. Clin Neurophysiol. 2020;131(2):474–528.
  • di Biase L, Tinkhauser G, Martin Moraud E, et al. Adaptive, personalized closed-loop therapy for Parkinson’s disease: biochemical, neurophysiological, and wearable sensing systems. Expert Rev Neurother. 2021;21(12):1371–1388.
  • Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–1267.
  • Halim A, et al. Utilization of functional near infrared spectroscopy for non-invasive evaluation in AIP Conference Proceedings. Melville (NY): AIP Publishing LLC; 2016.
  • Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921–935.
  • Mehagnoul-Schipper DJ, van der Kallen BF, Colier WN, et al. Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum Brain Mapp. 2002;16(1):14–23.
  • Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015;20(3):164–172.
  • Li R, Rui G, Chen W, et al. Early detection of Alzheimer’s disease using non-invasive near-infrared spectroscopy. Front Aging Neurosci. 2018;10:366.
  • Ritzenthaler T, Cho TH, Mechtouff L, et al. Cerebral near-infrared spectroscopy: a potential approach for thrombectomy monitoring. Stroke. 2017;48(12):3390–3392.
  • FDA. De Novo summary (K080377). Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K080377.pdf.
  • Moreau F, Yang R, Nambiar V, et al. Near-infrared measurements of brain oxygenation in stroke. Neurophotonics. 2016;3(3):031403.
  • Calderon-Arnulphi M, Alaraj A, Amin-Hanjani S, et al. Detection of cerebral ischemia in neurovascular surgery using quantitative frequency-domain near-infrared spectroscopy. J Neurosurg. 2007;106(2):283–290.
  • Erdoes G, Rummel C, Basciani RM, et al. Limitations of current Near-Infrared spectroscopy configuration in detecting focal cerebral ischemia during cardiac surgery: an observational case-series study. Artif Organs. 2018;42(10):1001–1009.
  • Giacalone G, Zanoletti M, Re R, et al. Time-domain near-infrared spectroscopy in acute ischemic stroke patients. Neurophotonics. 2019;6(1):015003.
  • Orihashi K, Sueda T, Okada K, et al. Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion. Eur J Cardiothorac Surg. 2004;26(5):907–911.
  • Nakamura S, Kano T, Sakatani K, et al. Optical topography can predict occurrence of watershed infarction during carotid endarterectomy: technical case report. Surg Neurol. 2009;71(5):540–542.
  • Strokefinder. Medfield Diagnostics AB. Available from: https://www.medfielddiagnostics.com/
  • Terborg C, Bramer S, Harscher S, et al. Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green. J Neurol Neurosurg Psychiatry. 2004;75(1):38–42.
  • Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis–part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–1243.
  • Dowrick T, Blochet C, Holder D. In vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: towards 3D stroke imaging using electrical impedance tomography. Physiol Meas. 2016;37(6):765–784.
  • Seoane F, Reza Atefi S, Tomner J, et al. Electrical bioimpedance spectroscopy on acute unilateral stroke patients: initial observations regarding differences between sides. Biomed Res Int. 2015;2015:613247.
  • Atefi SR, Seoane F, Lindecrantz K. Electrical bioimpedance cerebral monitoring. Preliminary results from measurements on stroke patients. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:126–129.
  • Kellner CP, Sauvageau E, Snyder KV, et al. The VITAL study and overall pooled analysis with the VIPS non-invasive stroke detection device. J Neurointerv Surg. 2018;10(11):1079–1084.
  • SFB7. ImpediMed. Available from: https://www.impedimed.com/
  • Visor System. Cerebrotech Medical Systems. Available from: http://www.cerebrotechmedical.com/
  • Semenov SY, Corfield DR. Microwave tomography for brain imaging: feasibility assessment for stroke detection. Int J Antennas Propag. 2008;2008:1–8.
  • McRee DI. Environmental aspects of microwave radiation. Environ Health Perspect. 1972;2:41–53.
  • Jalilvand M. Application-specific broadband antennas for microwave medical imaging. Vol. 85. Germany: KIT Scientific Publishing; 2017.
  • Zeng X. Time domain systems for microwave imaging: accuracy evaluations and prototype design. Sweden: Chalmers Tekniska Hogskola; 2013.
  • Pastorino M. Microwave imaging. Hoboken (NJ): John Wiley & Sons Inc.; 2010.
  • Preece AW, Craddock I, Shere M, et al. MARIA M4: clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection. J Med Imaging. 2016;3(3):033502.
  • Semenov S, Huynh T, Williams T, et al. Dielectric properties of brain tissue at 1 GHz in acute ischemic stroke: experimental study on swine. Bioelectromagnetics. 2017;38(2):158–163.
  • Paulson CN, Chang JT, Romero CE, et al. Ultra-wideband radar methods and techniques of medical sensing and imaging. In: Smart Medical and Biomedical Sensor Technology III (Vol. 6007, pp. 96–107). SPIE.
  • Cook D, Brown H, Widanapathirana I, et al. Case report: preliminary images from an electromagnetic portable brain scanner for diagnosis and monitoring of acute stroke. Front Neurol. 2021;12:765412.
  • Persson M, Fhager A, Trefná HD, et al. Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans Biomed Eng. 2014;61(11):2806–2817.
  • Hudson JS, Chung TK, Prout BS, et al. Iron nanoparticle contrast enhanced microwave imaging for emergent stroke: a pilot study. J Clin Neurosci. 2019;59:284–290.
  • Rodriguez-Duarte DO, Tobon Vasquez JA, Scapaticci R, et al. Experimental validation of a microwave system for brain stroke 3-D imaging. Diagnostics. 2021;11(7):1232.
  • Wang F, Zhang H, Bao J, et al. Experimental study on differential diagnosis of cerebral hemorrhagic and ischemic stroke based on microwave measurement. Technol Health Care. 2020;28(S1):289–301.
  • Xu J, Chen J, Yu W, et al. Noninvasive and portable stroke type discrimination and progress monitoring based on a multichannel microwave transmitting-receiving system. Sci Rep. 2020;10(1):21647.
  • Hueber DM, Franceschini MA, Ma HY, et al. Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument. Phys Med Biol. 2001;46(1):41–62.
  • Choi J, Wolf M, Toronov V, et al. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. J Biomed Opt. 2004;9(1):221–229.
  • van Gerven M, Farquhar J, Schaefer R, et al. The brain-computer interface cycle. J Neural Eng. 2009;6(4):041001.
  • Zhu J, He X, Chen Z. Perspective: current challenges and solutions of Doppler optical coherence tomography and angiography for neuroimaging. APL Photonics. 2018;3(12):120902
  • Guo L, Abbosh A. Stroke localization and classification using microwave tomography with k-means clustering and support vector machine. Bioelectromagnetics. 2018;39(4):312–324.
  • Ireland D. Microwave imaging for brain stroke detection using born iterative method. In: Konstanty B, editor. IET microwaves, antenna and propagation. New York, USA: Wiley; 2013. p. 909–915.
  • Ricci E, Di Domenico S, Cianca E, et al. Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:1930–1933.
  • Abtahi S. A new compact multiband antenna for stroke diagnosis system over 0.5–3 GHz. In: Yang J, editor. Microwave and optical technology letters. Hoboken (NJ): Wiley-Blackwell; 2012. p. 342–2346.
  • Bashri MSR, Arslan T. Low-cost and compact RF switching system for wearable microwave head imaging with performance verification on artificial head phantom. IET Microwav Antennas Propagat. 2018;12(5):706–711.
  • Emberson J, Lees KR, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384(9958):1929–1935.
  • Kunz WG, Hunink MGM, Sommer WH, et al. Cost-effectiveness of endovascular stroke therapy: a patient subgroup analysis from a US healthcare perspective. Stroke. 2016;47(11):2797–2804.
  • Kunz WG, Hunink MG, Almekhlafi MA, et al. Public health and cost consequences of time delays to thrombectomy for acute ischemic stroke. Neurology. 2020;95(18):e2465–e2475.
  • da Silva FCS, Kos AB, Antonucci GE, et al. Continuous-capture microwave imaging. Nat Commun. 2021;12(1):1–8.
  • Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29(4):463–487.