1,131
Views
3
CrossRef citations to date
0
Altmetric
Ophthalmology

Clinical characteristics and mutation spectrum in 33 Chinese families with familial exudative vitreoretinopathy

, , , , , , , & show all
Pages 3285-3297 | Received 26 Aug 2022, Accepted 07 Nov 2022, Published online: 21 Nov 2022

References

  • Boonstra FN, van Nouhuys CE, Schuil J, et al. Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2009;50(9):4379–4385.
  • Musada GR, Syed H, Jalali S, et al. Mutation spectrum of the FZD-4, TSPAN12 and ZNF408 genes in Indian FEVR patients. BMC Ophthalmol. 2016;16:90.
  • Li JK, Fei P, Li Y, et al. Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis. Sci Rep. 2016;6:26564.
  • Nikopoulos K, Gilissen C, Hoischen A, et al. Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet. 2010;86(2):240–247.
  • Collin RW, Nikopoulos K, Dona M, et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci USA. 2013;110(24):9856–9861.
  • Khan K, Logan CV, McKibbin M, et al. Next generation sequencing identifies mutations in atonal homolog 7 (ATOH7) in families with global eye developmental defects. Hum Mol Genet. 2012;21(4):776–783.
  • Zhang S, Li X, Liu W, et al. Whole-Exome sequencing identified DLG1 as a candidate gene for familial exudative vitreoretinopathy. Genet Test Mol Biomarkers. 2021;25(5):309–316.
  • Downey LM, Keen TJ, Roberts E, et al. A new locus for autosomal dominant familial exudative vitreoretinopathy maps to chromosome 11p12-13. Am J Hum Genet. 2001;68(3):778–781.
  • Yang M, Li S, Huang L, et al. CTNND1 variants cause familial exudative vitreoretinopathy through the wnt/cadherin axis. JCI Insight. 2022;7(14):e158428.
  • Zhu X, Yang M, Zhao P, et al. Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating norrin/β-catenin signaling. J Clin Invest. 2021;131(6):e139869.
  • Li S, Yang M, He Y, et al. Variants in the Wnt co-receptor LRP6 are associated with familial exudative vitreoretinopathy. J Genet Genomics. 2022;49(6):590–594.
  • Wu JH, Liu JH, Ko YC, et al. Haploinsufficiency of RCBTB1 is associated with coats disease and familial exudative vitreoretinopathy. Hum Mol Genet. 2016;25(8):1637–1647.
  • Park H, Yamamoto H, Mohn L, et al. Integrin-linked kinase controls retinal angiogenesis and is linked to wnt signaling and exudative vitreoretinopathy. Nat Commun. 2019;10(1):5243.
  • Zhang L, Zhang X, Xu H, et al. Exome sequencing revealed notch ligand JAG1 as a novel candidate gene for familial exudative vitreoretinopathy. Genet Med. 2020;22(1):77–84.
  • Toomes C, Bottomley HM, Jackson RM, et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet. 2004;74(4):721–730.
  • Chen ZY, Battinelli EM, Fielder A, et al. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy. Nat Genet. 1993;5(2):180–183.
  • Robitaille JM, Gillett RM, LeBlanc MA, et al. Phenotypic overlap between familial exudative vitreoretinopathy and microcephaly, lymphedema, and chorioretinal dysplasia caused by KIF11 mutations. JAMA Ophthalmol. 2014;132(12):1393–1399.
  • Coussa RG, Zhao Y, DeBenedictis MJ, et al. Novel mutation in CTNNB1 causes familial exudative vitreoretinopathy (FEVR) and microcephaly: case report and review of the literature. Ophthalmic Genet. 2020;41(1):63–68.
  • van der Ende SR, Meyers BS, Capasso JE, et al. Severe familial exudative vitreoretinopathy, congenital hearing loss, and developmental delay in a child with biallelic variants in FZD4. JAMA Ophthalmol. 2022;140(9):889–893.
  • Chen C, Sun L, Li S, et al. The spectrum of genetic mutations in patients with asymptomatic mild familial exudative vitreoretinopathy. Exp Eye Res. 2020;192:107941.
  • Rao FQ, Cai XB, Cheng FF, et al. Mutations in LRP5, FZD4, TSPAN12, NDP, ZNF408, or KIF11 genes account for 38.7% of Chinese patients with familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2017;58(5):2623–2629. 1
  • Salvo J, Lyubasyuk V, Xu M, et al. Next-generation sequencing and novel variant determination in a cohort of 92 familial exudative vitreoretinopathy patients. Invest Ophthalmol Vis Sci. 2015;56(3):1937–1946.
  • Pendergast SD, Trese MT. Familial exudative vitreoretinopathy. Results of surgical management. Ophthalmology. 1998;105(6):1015–1023.
  • Nagura K, Inoue T, Zhou HP, et al. Association between retinal artery angle and visual function in eyes with idiopathic epiretinal membrane. Transl Vis Sci Technol. 2021;10(9):35.
  • Thomas MG, Kumar A, Mohammad S, et al. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity? Ophthalmology. 2011;118(8):1653–1660.
  • Wang S, Zhang X, Hu Y, et al. Clinical and genetical features of probands and affected family members with familial exudative vitreoretinopathy in a large Chinese cohort. Br J Ophthalmol. 2021;105(1):83–86.
  • Tauqeer Z, Yonekawa Y, Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School. Familial exudative vitreoretinopathy: pathophysiology, diagnosis, and management. Asia Pac J Ophthalmol (Phila). 2018;7(3):176–182.
  • Lee J, El-Dairi MA, Tran-Viet D, et al. Longitudinal changes in the optic nerve head and retina over time in very young children with familial exudative vitreoretinopathy. Retina. 2019;39(1):98–110.
  • Chen C, Liu C, Wang Z, et al. Optical coherence tomography angiography in familial exudative vitreoretinopathy: clinical features and Phenotype-Genotype correlation. Invest Ophthalmol Vis Sci. 2018;59(15):5726–5734.
  • Vajzovic L, Hendrickson AE, O’Connell RV, et al. Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am J Ophthalmol. 2012;154(5):779–789.e2.
  • Zhang J, Jiang C, Ruan L, et al. Macular capillary dropout in familial exudative vitreoretinopathy and its relationship with visual acuity and disease progression. Retina. 2020; Jun40(6):1140–1147.
  • Li Y, Peng J, Li J, et al. The characteristics of digenic familial exudative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol. 2018;256(11):2149–2156.
  • Chen C, Zhang X, Peng X, et al. Lrp5 biallelic mutations cause a higher incidence of severe phenotype compared with lrp5 monoallelic mutation. Retina. 2022;42(10):1958–1964. 1
  • Seo SH, Yu YS, Park SW, et al. Molecular characterization of FZD4, LRP5, and TSPAN12 in familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2015;56(9):5143–5151.
  • Wang Z, Chen C, Sun L, et al. Symmetry of folds in FEVR: a genotype-phenotype correlation study. Exp Eye Res. 2019;186:107720.
  • Chen C, Cheng Y, Zhang Z, et al. Long-term clinical prognosis of 335 infant single-gene positive FEVR cases. BMC Ophthalmol. 2022;22(1):329.
  • Wang Y, Zhang Z, Huang L, et al. Update on the phenotypic and genotypic spectrum of KIF11-Related retinopathy. Genes (Basel). 2022;13(4):713.
  • Fei P, Zhang Q, Huang L, et al. Identification of two novel LRP5 mutations in families with familial exudative vitreoretinopathy. Mol Vis. 2014;20:395–409.