4,172
Views
11
CrossRef citations to date
0
Altmetric
Infectious Diseases

Prevalence of covid-19 among patients with chronic obstructive pulmonary disease and tuberculosis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 285-291 | Received 12 Oct 2022, Accepted 14 Dec 2022, Published online: 03 Jan 2023

References

  • Center for Systems Science and Engineering at Johns Hopkins University. COVID-19 dashboard; 2022. Available from: https://coronavirus.jhu.edu/map.html
  • Liu Y, Han X, Cui X, et al. Association between air pollutants and acute exacerbation of chronic obstructive pulmonary disease: a time stratified case-crossover design with a distributed lag nonlinear model. GeoHealth. 2022;6(2):e2021GH000529.
  • Burić DJ, Erceg M, Antoljak N. Gender differences in specific trends of COPD mortality in Croatia. Public Health. 2022;202:26–31.
  • World Health Organization (WHO). Global tuberculosis report 2022. License: CC BY-NC-SA 3.0 IGO. Geneva: World Health Organization; 2022. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
  • Gong W, Parkkila S, Wu X, et al. SARS-CoV-2 variants and COVID-19 vaccines: current challenges and future strategies. Int Rev Immunol. 2022:1–22.
  • Hogan AB, Jewell BL, Sherrard-Smith E, et al. Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study. Lancet Global Health. 2020;8(9):e1132–e1141.
  • Cilloni L, Fu H, Vesga JF, et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. EClinicalMedicine. 2020;28:100603.
  • Visca D, Ong CW, Tiberi S, et al. Tuberculosis and COVID-19 interaction: a review of biological, clinical and public health effects. Pulmonology. 2021;27(2):151–165.
  • Stochino C, Villa S, Zucchi P, et al. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian Reference Hospital. Eur Respir J. 2020;56(1):2001708.
  • Petrone L, Petruccioli E, Vanini V, et al. Coinfection of tuberculosis and COVID-19 limits the ability to in vitro respond to SARS-CoV-2. Int J Infect Dis. 2021;113:S82–S87.
  • Riou C, Du Bruyn E, Stek C, et al. Relationship of SARS-CoV-2-specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. J Clin Invest. 2021;131(12):e149125.
  • Tadolini M, Codecasa LR, García-García JM, et al. Active tuberculosis, sequelae and COVID-19 co-infection: first cohort of 49 cases. Eur Respir J. 2020;56(1):2001398.
  • Khan MA, Khan MA, Walley JD, et al. Feasibility of delivering integrated COPD-asthma care at primary and secondary level public healthcare facilities in Pakistan: a process evaluation. BJGP Open. 2019;3(1):bjgpopen18X101634.
  • Baba MA, Khan SE, Hasnain F, et al. Exploring the treatment types and challenges in patients with chronic obstructive pulmonary disease: a qualitative study. Middle East J Fam Med. 2022;7(10):23.
  • Census-2017, District table, Punjab, Pakistan Bureau of Statistics; 2022. Available from: www.pbs.gov.pk/sites/default/files/population/2017/punjab_tehsil.pdf
  • Mishra A, George AA, Sahu KK, et al. Tuberculosis and COVID-19 co-infection: an updated review. Acta Biomed. 2020;92(1):e2021025.
  • CDC&P (Center for Disease Control and Prevention); 2022. Available from: https://www.cdc.gov/copd/index.html#:∼:text=What%20is%20COPD%3F,Americans%20who%20have%20this%20disease
  • Taz TA, Ahmed K, Paul BK, et al. Identification of biomarkers and pathways for the SARS-CoV-2 infections that make complexities in pulmonary arterial hypertension patients. Brief Bioinform. 2021;22(2):1451–1465.
  • Taz TA, Ahmed K, Paul BK, et al. Network-based identification genetic effect of SARS-CoV-2 infections to idiopathic pulmonary fibrosis (IPF) patients. Brief Bioinform. 2021;22(2):1254–1266.
  • Mahmud SH, Chen W, Liu Y, et al. PreDTIs: prediction of drug–target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques. Briefings Bioinf. 2021;22(5):bbab046.
  • Mahmud SH, Al-Mustanjid M, Akter F, et al. Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease patients. Briefings Bioinf. 2021;22(5):bbab115.
  • Tanzir Mehedi S, Ahmed K, Bui FM, et al. MLBioIGE: integration and interplay of machine learning and bioinformatics approach to identify the genetic effect of SARS-COV-2 on idiopathic pulmonary fibrosis patients. Biol Methods Protoc. 2022;7(1):bpac013.
  • Islam M, Alam MK, Paul BK, et al. Identification of molecular biomarkers and key pathways for esophageal carcinoma (EsC): a bioinformatics approach. Biomed Res Int. 2022;2022:5908402.
  • Islam M, Abdulrazak LF, Alam MK, et al. Identification of potential key genes and molecular mechanisms of medulloblastoma based on integrated bioinformatics approach. Biomed Res Int. 2022;2022:1776082.
  • Al Zamane S, Nobel FA, Jebin RA, et al. Development of an in silico multi-epitope vaccine against SARS-COV-2 by précised immune-informatics approaches. Inform Med Unlocked. 2021;27:100781.
  • Islam R, Ahmed L, Paul BK, et al. Identification of molecular biomarkers and pathways of NSCLC: insights from a systems biomedicine perspective. J Genet Eng Biotechnol. 2021;19(1):1–9.
  • Islam MR, Ahmed ML, Paul BK, et al. Identification of the core ontologies and signature genes of polycystic ovary syndrome (PCOS): a bioinformatics analysis. Inf Med Unlocked. 2020;18:100304.
  • Bouwens JDM, Bischoff EWMA, In 't Veen JCCM, et al. Diagnostic differentiation between asthma and COPD in primary care using lung function testing. NPJ Prim Care Respir Med. 2022;32(1):32–39.
  • Raza A, Syed JG, Ali FM, et al. Incidence of vitamin D deficiency in different seasons in the adult Karachi population presenting in the medical outpatient department with generalized body ache. Cureus. 2019;11:18.
  • Curtis A. Hypoxic responses in resting hyperthermic humans [doctoral dissertation]. School of Kinesiology-Simon Fraser University; 2005.
  • Sy KT, Haw NJ, Uy J. Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. Infect Dis. 2020;52(12):902–907.
  • Cheng SL, Chan MC, Wang CC, et al. COPD in Taiwan: a national epidemiology survey. Int J Chron Obstruct Pulmon Dis. 2015;10:2459–2467.
  • In J, Lee DK. Survival analysis: part I—analysis of time-to-event. Korean J Anesthesiol. 2018;71(3):182–191.
  • WHO; 2022. Available from: https://covid19.who.int/
  • Chen Y, Wang Y, Fleming J, et al. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. MedRxiv; 2020.
  • Motta I, Centis R, D'Ambrosio L, et al. Tuberculosis, COVID-19 and migrants: preliminary analysis of deaths occurring in 69 patients from two cohorts. Pulmonology. 2020;26(4):233–240.
  • McQuaid CF, McCreesh N, Read JM, et al. The potential impact of COVID-19-related disruption on tuberculosis burden. Eur Respir J. 2020;56(2):2001718.
  • Maciel ELN, Gonçalves E, Dalcolmo MMP. Tuberculosis and coronavirus: what do we know? Epidemiol Serv Saúde. 2020;29(2):e2020128.
  • Klinton JS, Oga-Omenka C, Heitkamp P. TB and COVID – public and private health sectors adapt to a new reality. J Clin Tuberc Other Mycobact Dis. 2020;21:100199.
  • Amimo F, Lambert B, Magit A. What does the COVID-19 pandemic mean for HIV, tuberculosis, and malaria control? Trop Med Health. 2020;48(1):1–4.