1,136
Views
0
CrossRef citations to date
0
Altmetric
Pharmacology

Amyposomes, a nanotechnological chaperone with anti-amyloidogenic activity

ORCID Icon, , , , , , , ORCID Icon, , , , , & show all
Article: 2205659 | Received 12 Dec 2022, Accepted 17 Apr 2023, Published online: 04 May 2023

References

  • Benson MD, Buxbaum JN, Eisenberg DS, et al. Amyloid nomenclature 2020: update and recommendations by the international society of amyloidosis (ISA) nomenclature committee. Amyloid. 2020;27(4):1–15.
  • Hazenberg BP. Amyloidosis: a clinical overview. Rheum Dis Clin North Am. 2013;39(2):323–345.
  • Sipe JD, Benson MD, Buxbaum JN, et al. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 2014;21(4):221–224.
  • Pepys MB. Amyloidosis. Annu Rev Med. 2006;57:223–241.
  • Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387(10038):2641–2654.
  • Nevone A, Merlini G, Nuvolone M. Treating protein misfolding diseases: therapeutic biologicalSuccesses against systemic amyloidoses front. Pharmacol. 2020;11:1024.
  • Theodorakakou F, Fotiou D, Dimopoulos MA, et al. Solid organ transplantation in amyloidosis. Acta Haematol. 2020;143(4):352–364.
  • Mitra A, Sarkar N. Sequence and structure-based peptides as potent amyloid inhibitors: a review. Arch Biochem Biophys. 2020;695:108614–108619.
  • Rajan R, Ahmed S, Sharma N, et al. Review of the current state of protein aggregation inhibition from a materials chemistry perspective: special focus on polymeric materials. Mater Adv. 2021;2(4):1139–1176.
  • De Crozals G, Bonnet R, Farre C, et al. Nanoparticles with multiple properties for biomedical applications: a strategic guide. Nano Today. 2016;11(4):435–463.
  • Gobbi M, Re F, Canovi M, et al. Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide. Biomaterials. 2010;31(25):6519–6529.
  • Balducci C, Mancini S, Minniti S, et al. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J Neurosci. 2014;34(42):14022–14031.
  • Bana L, Minniti S, Salvati E, et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine. 2014;10(7):1583–1590.
  • Mancini S, Balducci C, Micotti E, et al. Multifunctional liposomes delay phenotype progression and prevent memory impairment in a presymptomatic stage mouse model of Alzheimer disease. J Control Release. 2017;258:121–129.
  • Valleix S, Gillmore J, Bridoux F, et al. Hereditary systemic amyloidosis due to Asp76Asn variant β2-microglobulin. N Engl J Med. 2012;366(24):2276–2283.
  • Esposito G, Michelutti R, Verdone G, et al. Removal of the N-terminal hexapeptide from human β2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci. 2000;9(5):831–845.
  • Re F, Cambianica I, Sesana S, et al. Functionalization with ApoE-derived peptides enhances the interaction with brain capillary endothelial cells of nanoliposomes binding amyloid-beta peptide. J Biotechnol. 2011;156(4):341–346.
  • Xue C, Lin TY, Chang D, et al. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci. 2017;4(1):160696.
  • Nardo L, Re F, Brioschi S, et al. Fluorimetric detection of the earliest events in amyloid β oligomerization and its inhibition by pharmacologically active liposomes. Biochim Biophys Acta. 2016;1860(4):746–756.
  • Dahlgren KN, Manelli AM, Stine WBJr, et al. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem. 2002;277(35):32046–32053.
  • Mangione PP, Verona G, Corazza A, et al. Plasminogen activation triggers transthyretin amyloidogenesis in vitro. J Biol Chem. 2018;293(37):14192–14199.
  • Raimondi S, Mangione PP, Verona G, et al. Comparative study of the stabilities of synthetic in vitro and natural ex vivo transthyretin amyloid fibrils. J Biol Chem. 2020;295(33):11379–11387.
  • Cantarutti C, Raimondi S, Brancolini G, et al. Citrate-stabilized gold nanoparticles hinder fibrillogenesis of a pathological variant of β2-microglobulin. Nanoscale. 2017;9(11):3941–3951.
  • Mok Y-F, Howlett GJ. Sedimentation velocity analysis of amyloid oligomers and fibrils. Methods Enzymol. 2006;413:199–217.
  • Lu JX, Qiang W, Yau WM, et al. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell. 2013;154(6):1257–1268.
  • Wälti MA, Ravotti F, Arai H, et al. Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. Proc Natl Acad Sci U S A. 2016;113(34): e4976–e4984.
  • Liberta F, Loerch S, Rennegarbe M, et al. Cryo-EM fibril structures from systemic AA amyloidosis reveal the species complementarity of pathological amyloids. Nat Commun. 2019;10(1):1104.
  • Schmidt M, Wiese S, Adak V, et al. Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nat Commun. 2019;10(1):5008.
  • Cerofolini L, Ravera E, Bologna S, et al. Mixing Aβ(1-40) and Aβ(1-42) peptides generates unique amyloid fibrils. Chem Commun. 2020;56(62):8830–8833.
  • Ahyayauch H, Raab M, Busto JV, et al. Binding of β-amyloid (1-42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: modeling and experimental studies. Biophys J. 2012;103(3):453–463.
  • Lin H, Bhatia R, Lal R. Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. Faseb J. 2001;15(13):2433–2444.
  • Galkin AP, Velizhanina ME, Sopova Y, et al. Prions and non-infectious amyloids of mammals – similarities and differences. Biochemistry. 2018;83:1184–1195.
  • Sakono M, Zako T. Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J. 2010;277(6):1348–1358.
  • Sonawane SK, Ahmad A, Chinnathambi S. Protein-capped metal nanoparticles. Inhibit tau aggregation in Alzheimer’s disease. ACS Omega. 2019;4(7):12833–12840.
  • D’Onofrio M, Munari F, Assfalg M. Alpha-synuclein-nanoparticle interactions: understanding, controlling and exploiting conformational plasticity. Molecules. 2020;25(23):5625.
  • Cabaleiro-Lago C, Lynch I, Dawson KA, et al. Inhibition of IAPP and IAPP(20-29) fibrillation by polymeric nanoparticles. Langmuir. 2010;26(5):3453–3461.