1,561
Views
0
CrossRef citations to date
0
Altmetric
Pharmacology

Protective effects of Centella asiatica extract on spatial memory and learning deficits in animal model of systemic inflammation induced by lipopolysaccharide

, , &
Article: 2224970 | Received 13 Jan 2023, Accepted 08 Jun 2023, Published online: 15 Jun 2023

References

  • Hensley K. Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences and potential for therapeutic manipulation. J Alzheimers Dis. 2010;21(1):1–16. doi: 10.3233/JAD-2010-1414.
  • Zhang F, Jiang L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2015;11:243–256. doi: 10.2147/NDT.S75546.
  • Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol. 2007;184(1–2):69–91. doi: 10.1016/j.jneuroim.2006.11.017.
  • Nazem A, Sankowski R, Bacher M, et al. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015;12:74. doi: 10.1186/s12974-015-0291-y.
  • Lee JW, Lee YK, Yuk DY, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflamm. 2008;5:37–50.
  • Gupta YK, Veerendra Kumar MH, Srivastava AK. Effects of Centella asiatica on pentylenetetrzole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav. 2003;74(3):579–585. doi: 10.1016/s0091-3057(02)01044-4.
  • Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci. 2010;72(5):546–556. doi: 10.4103/0250-474X.78519.
  • Visweswari G, Prasad KS, Chetan PS, et al. Evaluation of anticonvulsants effects of Centella asiatica (gotu kala) in pentelynetetrazole-induced seizures with respect to cholinergic neurotransmission. Epilepsy Behav. 2010;17(3):332–335. doi: 10.1016/j.yebeh.2010.01.002.
  • James JT, Dubery IA. Pentacyclic triterpenoids from the medicinal herb, centella asiatica (L.) urban. Molecules. 2009;14(10):3922–3941. doi: 10.3390/molecules14103922.
  • Jantwal A, Durgapal S, Upadhyay J, et al. Centella asiatica. In: Belwal T, Nabavi SM, Nabavi SF, Dehpour AR, editors. Naturally occurring chemicals against Alzheimer’s Disease. London: academic Press. 2021; p. 257–269.
  • Lokanathan Y, Omar N, Puzi A, et al. R. Recent updates in neuroprotective and neurodegenerative potential of Centella asiatica. Malaysia J Med Sci. 2015;23(1):4–14.
  • Gray NE, Zweig JA, Caruso M, et al. Centella asiatica increases hippocampal synaptic density and improves memory and executive function in aged mice. Brain Behav. 2018;8(7):e01024. doi: 10.1002/brb3.1024.
  • Randriamampionona D, Diallo B, Rakotoniriana F, et al. Comparative analysis of active constituents in centella asiatica samples from Madagascar: application for ex situ conservation and clonal propagation. Fitoterapia. 2007;78(7–8):482–489. doi: 10.1016/j.fitote.2007.03.016.
  • Hafiz ZZ, Amin MM, Johari James RM, et al. Inhibitory effects of raw extract Centella asiatica (RECA) on acetylcholinesterase, inflammations, and oxidative stress activities via in vitro and in vivo. Molecules. 2020;25(4):892–912. doi: 10.3390/molecules25040892.
  • OECD Guideline for Testing of Chemicals. Acute oral Toxicity-Fixed dose procedure. Paris: Organisation for Economic Co-operation and Development; 2001. p. 1–14.
  • Magalingam KB, Radhakrishnan A, Ping NS, et al. Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. Biomed Res Int. 2018;2018:3740461. doi: 10.1155/2018/3740461.
  • Bluthe RM, Dantzer R, Kelley KW. Effects of interleukin-1 receptor antagonist on the behavioral effects of lipopolysaccharide in rat. Brain Res. 1992;573(2):318–320. doi: 10.1016/0006-8993(92)90779-9.
  • Jacewicz M, Czapski GA, Katkowska I, et al. Systemic administration of lipopolysaccharide impairs glutathione redox state and object recognition in male mice. The effect of PARP-1 inhibitor. Folia Neuropathol. 2009;47(4):321–328.
  • Bossu P, Cutuli D, Palladino I, et al. A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain levels of TNF-α and IL-18. J Inflamm. 2012;9:101–113.
  • Abdul Hannan M, Nazmul Haque M, Munni YA, et al. Centella asiatica promotes early differentiation, axodendritic maturation and synaptic formation in primary hippocampal neurons. Neurochem Int. 2021;144:104957. doi: 10.1016/j.neuint.2021.104957.
  • Kumar MHV, Gupta YK. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol. 2002;79(2):253–260. doi: 10.1016/s0378-8741(01)00394-4.
  • Kumar A, Samrita D, Prakash A. Neuroprotective effects of centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimer’s Dis. 2009;2009:1–8. doi: 10.4061/2009/972178.
  • Chiroma SM, Hidayat Baharuldin MT, Mat Taib CN, et al. Protective effect of Centella asiatica against D-galactose and aluminium chloride induced rats: behavioral and ultrastructural approaches. Biomed Pharmacother. 2019;109:853–864. doi: 10.1016/j.biopha.2018.10.111.
  • Wu ZW, Li WB, Zhou J, et al. Oleanane and ursane-type triterpene saponins from centella asiatica exhibit neuroprotective effects. J Agric Food Chem. 2020;68(26):6977–6986. doi: 10.1021/acs.jafc.0c01476.
  • Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–858. doi: 10.1038/nprot.2006.116.
  • Soumyanath A, Zhong YP, Gold SA, et al. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in vitro. J Pharm Pharmacol. 2005;57(9):1221–1229. doi: 10.1211/jpp.57.9.0018.
  • Serrano-Pozo A, Mielke ML, Gómez-Isla T, et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol. 2011;179(3):1373–1384. doi: 10.1016/j.ajpath.2011.05.047.
  • Meraz-Ríos MA, Toral-Rios D, Franco-Bocanegra D, et al. Inflammatory process in Alzheimer’s disease. Front Integr Neurosci. 2013;7:59. doi: 10.3389/fnint.2013.00059.
  • McLarnon JG. Correlated inflammatory responses and neurodegeneration in peptide-injected animal models of Alzheimer’s disease. Biomed Res Int. 2014;2014:923670. doi: 10.1155/2014/923670.
  • Steinman L. Inflammatory cytokines at the summits of pathological signal Cascades in brain diseases. Sci Signal. 2013;6(258):pe3. doi: 10.1126/scisignal.2003898.
  • Somann JP, Wasilczuk KM, Neihouser KV, et al. Characterization of plasma cytokine response to intraperitoneally administered LPS & subdiaphragmatic branch Vagus nerve stimulation in rat model. PLoS One. 2019;14(3):e0214317. doi: 10.1371/journal.pone.0214317.
  • Barrientos RM, Higgins EA, Biedenkapp JC, et al. Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging. 2006;27(5):723–732. doi: 10.1016/j.neurobiolaging.2005.03.010.
  • Dantzer R. Cytokine-induced sickness behavior: Where do we stand? Brain Behav Immun. 2001;15(1):7–24. doi: 10.1006/brbi.2000.0613.
  • Laye S, Parnet P, Goujon E, et al. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res. 1994;27(1):157–162. doi: 10.1016/0169-328x(94)90197-x.
  • Chen Z, Jalabi W, Shpargel KB, et al. Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci. 2012;32(34):11706–11715. doi: 10.1523/JNEUROSCI.0730-12.2012.
  • Zhao Y, Lukiw WJ. Bacteroidetes neurotoxins and inflammatory neurodegeneration. Mol Neurobiol. 2018;55(12):9100–9107. doi: 10.1007/s12035-018-1015-y.
  • Batista CRA, Gomes GF, Candelario-Jalil E, et al. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019;20(9):2293–2324. doi: 10.3390/ijms20092293.
  • Biesmans S, Meert TF, Bouwknecht JA, et al. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm. 2013; 2013:271359. doi: 10.1155/2013/271359.
  • Anaeigoudari A, Shafei MN, Soukhtanloo M, et al. Lipopolysaccharide-induced memory impairment in rats is preventable using 7-nitroindazole. Arq Neuropsiquiatr. 2015;73(9):784–790. doi: 10.1590/0004-282X20150121.
  • Czerniawski J, Miyashita T, Lewandowski G, et al. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun. 2015;44:159–166. doi: 10.1016/j.bbi.2014.09.014.
  • Kakizaki Y, Watanobe H, Kohsaka A, et al. Temporal profiles of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in the plasma and hypothalamic paraventricular nucleus after intravenous or intraperitoneal administration of lipopolysaccharide in the rat: estimation by push-pull perfusion. Endocr J. 1999;46(4):487–496. doi: 10.1507/endocrj.46.487.
  • Vitkovic L, Konsman JP, Bockaert J, et al. Cytokine signals propagate through the brain. Mol Psychiatry. 2000;5(6):604–615. doi: 10.1038/sj.mp.4000813.
  • Ifeoma O, Oluwakanyinsola S. Screening of herbal medicines for potential toxicities. In: Gowler S, editor. New insights into toxicity and drug testing. London: Intech Open; 2013. p. 63–88.
  • Bhardwaj S, Gupta D. Study of acute, subacute and chronic toxicity test. Int J Adv Res Pharmaceu BioSci. 2012;2(2):103–129.
  • S. Satyapa U, J. Kadam V, Ghosh R. Hepatoprotective activity of livobond a polyherbal formulation against CCl-4 induced hepatotoxicity in rats. Int J Pharmacol. 2008;4(6):472–476. doi: 10.3923/ijp.2008.472.476.
  • Burcham PC. An introduction to toxicology. In: Target-organ toxicity: liver and kidney. London: Springer; 2014. p. 151–186.
  • Vahalia MK, Thakur KS, Nadkarni S, et al. Chronic toxicity study for Tamra Bhasma (a generic ayurvedic mineral formulation) in laboratory animals. Recent Res Sci Technol. 2011;3(11):76–79.
  • Pallavi OD, Vishwaraman M, Prasad T. Preclinical safety assessment of standardized extract of centella asiatica (L.) urban leaves. Toxicol Int. 2015;22(1):10–20.
  • Yadav MK, Santosh KS, Manish S, et al. In vivo toxicity study of ethanolic extracts of Evolvulus alsinoides & Centella asiatica in Swiss albino mice. Open Access Maced J Med Sci. 2019;7(7):1071–1076. doi: 10.3889/oamjms.2019.209.
  • Chivapat S, Chavalittumrong P, Tantisira MH. Acute and Sub chronic toxicity studies of a standardized extract of Centella asiatica. Thai J Pharm Sci. 2011;35:55–64.
  • Pingale SS. Acute toxicity study for Centella asiatica whole plant powder. Newsletter Pharmacologyonline. 2008;3:80–84.
  • Chauhan PK, Singh V. Acute and Sub-acute toxicity study of the acetone leaf extract of Centella asiatica in experimental animal models. Asian Pacific J Tropic Biomed. 2012;2(2):S511–S513. doi: 10.1016/S2221-1691(12)60263-9.
  • Asare GA, Gyan B, Bugyei K, et al. Toxicity potentials of the nutraceutical Moringa oleifera at super-supplementation levels. J Ethnopharmacol. 2012;139(1):265–272. doi: 10.1016/j.jep.2011.11.009.