1,068
Views
1
CrossRef citations to date
0
Altmetric
Ophthalmology

Intravitreal injections with anti-VEGF agent aflibercept versus subthreshold micropulse laser for chronic central serous chorioretinopathy: the alternative treatment regimens for verteporfin-shortage in China

, , , &
Article: 2227424 | Received 15 Mar 2023, Accepted 14 Jun 2023, Published online: 29 Jun 2023

References

  • van Rijssen TJ, van Dijk EHC, Yzer S, et al. Central serous chorioretinopathy: towards an evidence-based treatment guideline. Prog Retin Eye Res. 2019;73:1. doi: 10.1016/j.preteyeres.2019.07.003.
  • van Dijk EHC, Boon CJF. Serous business: delineating the broad spectrum of diseases with subretinal fluid in the macula. Prog Retin Eye Res. 2021;84:100955. doi: 10.1016/j.preteyeres.2021.100955.
  • Spaide RF, Gemmy Cheung CM, Matsumoto H, et al. Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders. Prog Retin Eye Res. 2022;86:100973. doi: 10.1016/j.preteyeres.2021.100973.
  • Wang M, Munch IC, Hasler PW, et al. Central serous chorioretinopathy. Acta Ophthalmol. 2008;86(2):126–13. doi: 10.1111/j.1600-0420.2007.00889.x.
  • Peiretti E, Caminiti G, Serra R, et al. Anti-Vascular endothelial growth factor therapy versus photodynamic therapy in the treatment of choroidal neovascularization secondary to Central serous chorioretinopathy. Retina. 2018;38(8):1526–1532. doi: 10.1097/IAE.0000000000001750.
  • Pitcher JD, 3rd, Witkin AJ, DeCroos FC, et al. A prospective pilot study of intravitreal aflibercept for the treatment of chronic Central serous chorioretinopathy: the contain study. Br J Ophthalmol. 2015;99(6):848–852. doi: 10.1136/bjophthalmol-2014-306018.
  • Bandello F, Virgili G, Lanzetta P, et al. ICG angiography and retinal pigment epithelial decompensation (CRSC and epitheliopathy). J Fr Ophtalmol. 2001;24:448–451.
  • Loo RH, Scott IU, Flynn HW, Jr., et al. Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy. Retina. 2002;22(1):19–24. doi: 10.1097/00006982-200202000-00004.
  • Kim RY, Ma GJ, Park WK, et al. Clinical course after the onset of choroidal neovascularization in eyes with central serous chorioretinopathy. Medicine. 2021;100(34):e26980. doi: 10.1097/MD.0000000000026980.
  • Mrejen S, Balaratnasingam C, Kaden TR, et al. Long-term visual outcomes and causes of vision loss in chronic central serous chorioretinopathy. Ophthalmology. 2019;126(4):576–588. doi: 10.1016/j.ophtha.2018.12.048.
  • Mohabati D, van Dijk EH, van Rijssen TJ, et al. Clinical spectrum of severe chronic Central serous chorioretinopathy and outcome of photodynamic therapy. Clin Ophthalmol. 2018;12:2167–2176. doi: 10.2147/OPTH.S174573.
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049.
  • Chan WM, Lam DS, Lai TY, et al. Choroidal vascular remodelling in central serous chorioretinopathy after indocyanine green guided photodynamic therapy with verteporfin: a novel treatment at the primary disease level. Br J Ophthalmol. 2003;87(12):1453–1458. doi: 10.1136/bjo.87.12.1453.
  • Schmidt-Erfurth U, Hasan T. Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv Ophthalmol. 2000;45(3):195–214. doi: 10.1016/s0039-6257(00)00158-2.
  • van Dijk EHC, Fauser S, Breukink MB, et al. Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE trial. Ophthalmology. 2018;125(10):1547–1555. doi: 10.1016/j.ophtha.2018.04.021.
  • van Rijssen TJ, van Dijk EHC, Scholz P, et al. Crossover to photodynamic therapy or micropulse laser after failure of primary treatment of chronic central serous chorioretinopathy: the REPLACE trial. Am J Ophthalmol. 2020;216:80–89. doi: 10.1016/j.ajo.2020.04.007.
  • Lotery A, Sivaprasad S, O’Connell A, et al. Eplerenone for chronic central serous chorioretinopathy in patients with active, previously untreated disease for more than 4 months (VICI): a randomised, double-blind, placebo-controlled trial. Lancet. 2020;395(10220):294–303. doi: 10.1016/S0140-6736(19)32981-2.
  • van Rijssen TJ, van Dijk EHC, Tsonaka R, et al. Half-Dose photodynamic therapy versus eplerenone in chronic Central serous chorioretinopathy (SPECTRA): a randomized controlled trial. Am J Ophthalmol. 2022;233:101–110. doi: 10.1016/j.ajo.2021.06.020.
  • Russo A, Turano R, Morescalchi F, et al. Comparison of half-dose photodynamic therapy and 689 nm laser treatment in eyes with chronic Central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(6):1141–1148. doi: 10.1007/s00417-017-3626-9.
  • van Dijk EHC, van Rijssen TJ, Subhi Y, et al. Photodynamic therapy for chorioretinal diseases: a practical approach. Ophthalmol Ther. 2020;9(2):329–342. doi: 10.1007/s40123-020-00250-0.
  • Sirks MJ, van Dijk EHC, Rosenberg N, et al. Clinical impact of the worldwide shortage of verteporfin (visudyne(R)) on ophthalmic care. Acta Ophthalmol. 2022;100(7):e1522–e1532.
  • Karska-Basta I, Pociej-Marciak W, Chrzaszcz M, et al. Altered plasma cytokine levels in acute and chronic Central serous chorioretinopathy. Acta Ophthalmol. 2021;99(2):e222–e231. doi: 10.1111/aos.14547.
  • Hata M, Oishi A, Tsujikawa A, et al. Efficacy of intravitreal injection of aflibercept in neovascular age-related macular degeneration with or without choroidal vascular hyperpermeability. Invest Ophthalmol Vis Sci. 2014;55(12):7874–7880. doi: 10.1167/iovs.14-14610.
  • Julien S, Biesemeier A, Taubitz T, et al. Different effects of intravitreally injected ranibizumab and aflibercept on retinal and choroidal tissues of monkey eyes. Br J Ophthalmol. 2014;98(6):813–825. doi: 10.1136/bjophthalmol-2013-304019.
  • Schworm B, Luft N, Keidel LF, et al. Response of neovascular central serous chorioretinopathy to an extended upload of anti-VEGF agents. Graefes Arch Clin Exp Ophthalmol. 2020;258(5):1013–1021. doi: 10.1007/s00417-020-04623-w.
  • Scholz P, Altay L, Fauser S. Comparison of subthreshold micropulse laser (577 nm) treatment and half-dose photodynamic therapy in patients with chronic central serous chorioretinopathy. Eye (Lond). 2016;30(10):1371–1377. doi: 10.1038/eye.2016.142.
  • Long H, Liu M, Hu Q, et al. 577 nm subthreshold micropulse laser treatment for acute central serous chorioretinopathy: a comparative study. BMC Ophthalmol. 2022;22(1):105. doi: 10.1186/s12886-022-02330-0.
  • Smretschnig E, Hagen S, Glittenberg C, et al. Intravitreal anti-vascular endothelial growth factor combined with half-fluence photodynamic therapy for choroidal neovascularization in chronic central serous chorioretinopathy. Eye (Lond). 2016;30(6):805–811. doi: 10.1038/eye.2016.41.
  • Sulzbacher F, Schutze C, Burgmuller M, et al. Clinical evaluation of neovascular and non-neovascular chronic Central serous chorioretinopathy (CSC) diagnosed by swept source optical coherence tomography angiography (SS OCTA). Graefes Arch Clin Exp Ophthalmol. 2019;257(8):1581–1590. doi: 10.1007/s00417-019-04297-z.
  • Hata M, Oishi A, Shimozono M, et al. Early changes in foveal thickness in eyes with Central serous chorioretinopathy. Retina. 2013;33(2):296–301. doi: 10.1097/IAE.0b013e31826710a0.
  • Davoudi S, Papavasileiou E, Roohipoor R, et al. Optical coherence tomography characteristics of macular edema and hard exudates and their association with lipid serum levels in type 2 diabetes. Retina. 2016;36(9):1622–1629. doi: 10.1097/IAE.0000000000001022.
  • Lee H, Lee J, Chung H, et al. Baseline spectral domain optical coherence tomographic hyperreflective foci as a predictor of visual outcome and recurrence for central serous chorioretinopathy. Retina. 2016;36(7):1372–1380. doi: 10.1097/IAE.0000000000000929.
  • Matet A, Daruich A, Zola M, et al. Risk factors for recurrences of central serous chorioretinopathy. Retina. 2018;38(7):1403–1414. doi: 10.1097/IAE.0000000000001729.
  • Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015;48:82–118. doi: 10.1016/j.preteyeres.2015.05.003.
  • Cheung CMG, Lee WK, Koizumi H, et al. Pachychoroid disease. Eye (Lond). 2019;33(1):14–33. doi: 10.1038/s41433-018-0158-4.
  • Peters S, Julien S, Heiduschka P, et al. Antipermeability and antiproliferative effects of standard and frozen bevacizumab on choroidal endothelial cells. Br J Ophthalmol. 2007;91(6):827–831. doi: 10.1136/bjo.2006.109702.
  • Koizumi H, Kano M, Yamamoto A, et al. Subfoveal choroidal thickness during aflibercept therapy for neovascular age-related macular degeneration: twelve-month results. Ophthalmology. 2016;123(3):617–624. doi: 10.1016/j.ophtha.2015.10.039.
  • Nourinia R, Ahmadieh H, Nekoei E, et al. Changes in central choroidal thickness after treatment of diabetic macular edema with intravitreal bevacizumab correlation with central macular thickness and best-corrected visual acuity. Retina. 2018;38(5):970–975. doi: 10.1097/IAE.0000000000001645.
  • Roohipoor R, Sharifian E, Ghassemi F, et al. Choroidal thickness changes in proliferative diabetic retinopathy treated with panretinal photocoagulation versus panretinal photocoagulation with intravitreal bevacizumab. Retina. 2016;36(10):1997–2005. doi: 10.1097/IAE.0000000000001027.
  • Chrząszcz M, Pociej-Marciak W, Żuber-Łaskawiec K, et al. Changes in plasma VEGF and PEDF levels in patients with Central serous chorioretinopathy. Medicina. 2021;57(10):1063. doi: 10.3390/medicina57101063.
  • Karska-Basta I, Pociej-Marciak W, Chrzaszcz M, et al. Imbalance in the levels of angiogenic factors in patients with acute and chronic Central serous chorioretinopathy. J Clin Med. 2021;10(5):1087.
  • Terao N, Koizumi H, Kojima K, et al. Association of upregulated angiogenic cytokines with choroidal abnormalities in chronic Central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2018;59(15):5924–5931. doi: 10.1167/iovs.18-25517.
  • Yu AK, Merrill KD, Truong SN, et al. The comparative histologic effects of subthreshold 532- and 810-nm diode micropulse laser on the retina. Invest Ophthalmol Vis Sci. 2013;54(3):2216–2224. doi: 10.1167/iovs.12-11382.
  • Mainster MA. Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems. Ophthalmology. 1986;93(7):952–958. doi: 10.1016/s0161-6420(86)33637-6.
  • Scholz P, Altay L, Fauser S. A review of subthreshold micropulse laser for treatment of macular disorders. Adv Ther. 2017;34(7):1528–1555. doi: 10.1007/s12325-017-0559-y.
  • Kim JY, Park HS, Kim SY. Short-term efficacy of subthreshold micropulse yellow laser (577-nm) photocoagulation for chronic Central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2015;253(12):2129–2135. doi: 10.1007/s00417-015-2965-7.
  • van Rijssen TJ, Hahn LC, van Dijk EHC, et al. RESPONSE oF CHOROIDAL ABNORMALITIES tO PHOTODYNAMIC THERAPY vERSUS MICROPULSE LASER in CHRONIC Central SEROUS CHORIORETINOPATHY: place trial report no. 4. Retina. 2021;41(10):2122–2131. doi: 10.1097/IAE.0000000000003157.
  • Subhi Y, Bjerager J, Boon CJF, et al. Subretinal fluid morphology in chronic Central serous chorioretinopathy and its relationship to treatment: a retrospective analysis on PLACE trial data. Acta Ophthalmol. 2022;100(1):89–95. doi: 10.1111/aos.14901.
  • Feenstra HMA, Hahn LC, van Rijssen TJ, et al. Efficacy of Half-Dose photodynamic therapy versus High-Density subthreshold micropulse laser for treating pigment epithelial detachments in chronic Central serous chorioretinopathy. Retina. 2022;42(4):721–729. doi: 10.1097/IAE.0000000000003363.
  • Gupta B, Elagouz M, McHugh D, et al. Micropulse diode laser photocoagulation for Central serous chorio-retinopathy. Clin Exp Ophthalmol. 2009;37(8):801–805. doi: 10.1111/j.1442-9071.2009.02157.x.
  • Lavinsky D, Palanker D. Nondamaging photothermal therapy for the retina: initial clinical experience with chronic Central serous retinopathy. Retina. 2015;35(2):213–222. doi: 10.1097/IAE.0000000000000340.
  • Koss MJ, Beger I, Koch FH. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of Central serous chorioretinopathy. Eye. 2012;26(2):307–314. doi: 10.1038/eye.2011.282.
  • Yadav NK, Jayadev C, Mohan A, et al. Subthreshold micropulse yellow laser (577 nm) in chronic Central serous chorioretinopathy: safety profile and treatment outcome. Eye (Lond). 2015;29(2):258–264; quiz 265. doi: 10.1038/eye.2014.315.
  • Song IS, Shin YU, Lee BR. Time-periodic characteristics in the morphology of idiopathic Central serous chorioretinopathy evaluated by volume scan using spectral-domain optical coherence tomography. Am J Ophthalmol. 2012;154(2):366–375.e4. e364. doi: 10.1016/j.ajo.2012.02.031.
  • Yang L, Jonas JB, Wei W. Optical coherence tomography-assisted enhanced depth imaging of Central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2013;54(7):4659–4665. doi: 10.1167/iovs.12-10991.
  • Mrejen S, Sarraf D, Mukkamala SK, et al. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina. 2013;33(9):1735–1762. doi: 10.1097/IAE.0b013e3182993f66.
  • Demirel S, Ozcan G, Yanik O, et al. Vascular and structural alterations of the choroid evaluated by optical coherence tomography angiography and optical coherence tomography after half-fluence photodynamic therapy in chronic Central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2019;257(5):905–912. doi: 10.1007/s00417-018-04226-6.
  • Karasu B, Akbas YB, Aykut A, et al. Comparison of retinochoroidal vascular and structural changes after Half-Dose photodynamic therapy versus Half-Fluence photodynamic therapy based on optical coherence tomography angiography in eyes with chronic Central serous chorioretinopathy. Ophthalmologica. 2022;245(4):323–334. doi: 10.1159/000523704.
  • Christou EE, Stavrakas P, Kozobolis V, et al. Evaluation of the choriocapillaris after photodynamic therapy for chronic central serous chorioretinopathy. A review of optical coherence tomography angiography (OCT-A) studies. Graefes Arch Clin Exp Ophthalmol. 2022;260(6):1823–1835. doi: 10.1007/s00417-022-05563-3.
  • van Rijssen TJ, van Dijk EHC, Scholz P, et al. Long-term follow-up of chronic Central serous chorioretinopathy after successful treatment with photodynamic therapy or micropulse laser. Acta Ophthalmol. 2021;99(7):805–811. doi: 10.1111/aos.14775.
  • Wang MS, Sander B, Larsen M. Retinal atrophy in idiopathic central serous chorioretinopathy. Am J Ophthalmol. 2002;133(6):787–793. doi: 10.1016/s0002-9394(02)01438-1.
  • Levine R, Brucker AJ, Robinson F. Long-term follow-up of idiopathic Central serous chorioretinopathy by fluorescein angiography. Ophthalmology. 1989;96(6):854–859. doi: 10.1016/s0161-6420(89)32810-7.
  • Wong R, Chopdar A, Brown M. Five to 15 year follow-up of resolved idiopathic Central serous chorioretinopathy. Eye (Lond). 2004;18(3):262–268. doi: 10.1038/sj.eye.6700637.