820
Views
0
CrossRef citations to date
0
Altmetric
Oncology

Research progress on the relationship between AURKA and tumorigenesis: the neglected nuclear function of AURKA

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2282184 | Received 20 Aug 2023, Accepted 31 Oct 2023, Published online: 13 May 2024

References

  • Chan CS, Botstein D. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics. 1993;135(3):677–691. doi: 10.1093/genetics/135.3.677.
  • Glover DM, Leibowitz MH, McLean DA, et al. Mutations in Aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell. 1995;81(1):95–105. doi: 10.1016/0092-8674(95)90374-7.
  • Giet R, Uzbekov R, Kireev I, et al. The Xenopus laevis centrosome Aurora/Ipl1-related kinase. Biol Cell. 1999;91(6):461–470.
  • Schumacher JM, Ashcroft N, Donovan PJ, et al. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development. 1998;125(22):4391–4402. doi: 10.1242/dev.125.22.4391.
  • Isola JJ, Kallioniemi OP, Chu LW, et al. Genetic aberrations detected by comparative genomic hybridization predict outcome in node-negative breast cancer. Am J Pathol. 1995;147(4):905–911.
  • Kahl I, Mense J, Finke C, et al. The cell cycle-related genes RHAMM, AURKA, TPX2, PLK1, and PLK4 are associated with the poor prognosis of breast cancer patients. J Cell Biochem. 2022;123(3):581–600. doi: 10.1002/jcb.30205.
  • Puig-Butille JA, Vinyals A, Ferreres JR, et al. AURKA overexpression is driven by FOXM1 and MAPK/ERK activation in melanoma cells harboring BRAF or NRAS mutations: impact on melanoma prognosis and therapy. J Invest Dermatol. 2017;137(6):1297–1310. doi: 10.1016/j.jid.2017.01.021.
  • Takahashi Y, Sheridan P, Niida A, et al. The AURKA/TPX2 axis drives Colon tumorigenesis cooperatively with MYC. Ann Oncol. 2015;26(5):935–942. doi: 10.1093/annonc/mdv034.
  • Lassmann S, Shen Y, Jütting U, et al. Predictive value of Aurora-a/STK15 expression for late stage epithelial ovarian cancer patients treated by adjuvant chemotherapy. Clin Cancer Res. 2007;13(14):4083–4091. doi: 10.1158/1078-0432.Ccr-06-2775.
  • de Paula Careta F, Gobessi S, Panepucci RA, et al. The Aurora a and B kinases are up-regulated in bone marrow-derived chronic lymphocytic leukemia cells and represent potential therapeutic targets. Haematologica. 2012;97(8):1246–1254. doi: 10.3324/haematol.2011.054668.
  • Goldenson B, Crispino JD. The Aurora kinases in cell cycle and leukemia. Oncogene. 2015;34(5):537–545. doi: 10.1038/onc.2014.14.
  • Bischoff JR, Anderson L, Zhu Y, et al. A homologue of drosophila Aurora kinase is oncogenic and amplified in human colorectal cancers. Embo J. 1998;17(11):3052–3065. doi: 10.1093/emboj/17.11.3052.
  • Wang LH, Xiang J, Yan M, et al. The mitotic kinase Aurora-a induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Res. 2010;70(22):9118–9128. doi: 10.1158/0008-5472.Can-10-1246.
  • Miligy IM, Toss MS, Gorringe KL, et al. Aurora kinase a is an independent predictor of invasive recurrence in breast ductal carcinoma in situ. Pathobiology. 2022;89(6):382–392. doi: 10.1159/000522244.
  • Li S, Qi Y, Yu J, et al. Nuclear Aurora kinase a switches m(6)a reader YTHDC1 to enhance an oncogenic RNA splicing of tumor suppressor RBM4. Signal Transduct Target Ther. 2022;7(1):97. doi: 10.1038/s41392-022-00905-3.
  • Li M, Sun C, Bu X, et al. ISL1 promoted tumorigenesis and EMT via Aurora kinase A-induced activation of PI3K/AKT signaling pathway in neuroblastoma. Cell Death Dis. 2021;12(6):620. doi: 10.1038/s41419-021-03894-3.
  • Shen ZT, Chen Y, Huang GC, et al. Aurora-a confers radioresistance in human hepatocellular carcinoma by activating NF-κB signaling pathway. BMC Cancer. 2019;19(1):1075. doi: 10.1186/s12885-019-6312-y.
  • Miralaei N, Majd A, Ghaedi K, et al. Integrated pan-cancer of AURKA expression and drug sensitivity analysis reveals increased expression of AURKA is responsible for drug resistance. Cancer Med. 2021;10(18):6428–6441. doi: 10.1002/cam4.4161.
  • Sun S, Zhou W, Li X, et al. Nuclear Aurora kinase a triggers programmed death-ligand 1-mediated immune suppression by activating MYC transcription in triple-negative breast cancer. Cancer Commun (Lond). 2021;41(9):851–866. doi: 10.1002/cac2.12190.
  • Xie Y, Zhu S, Zhong M, et al. Inhibition of Aurora kinase a induces necroptosis in pancreatic carcinoma. Gastroenterology. 2017;153(5):1429–1443.e5. e1425. doi: 10.1053/j.gastro.2017.07.036.
  • Du J, Yan L, Torres R, et al. Aurora A-Selective inhibitor LY3295668 leads to dominant mitotic arrest, apoptosis in cancer cells, and shows potent preclinical antitumor efficacy. Mol Cancer Ther. 2019;18(12):2207–2219. doi: 10.1158/1535-7163.Mct-18-0529.
  • Bavetsias V, Linardopoulos S. Aurora kinase inhibitors: current status and outlook. Front Oncol. 2015;5:278. doi: 10.3389/fonc.2015.00278.
  • Melichar B, Adenis A, Lockhart AC, et al. Safety and activity of alisertib, an investigational Aurora kinase a inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. 2015;16(4):395–405. doi: 10.1016/s1470-2045(15)70051-3.
  • Chen A, Wen S, Liu F, et al. CRISPR/Cas9 screening identifies a kinetochore-microtubule dependent mechanism for Aurora-a inhibitor resistance in breast cancer. Cancer Commun (Lond). 2021;41(2):121–139. doi: 10.1002/cac2.12125.
  • Zheng F, Yue C, Li G, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7(1):10180. doi: 10.1038/ncomms10180.
  • Whately KM, Voronkova MA, Maskey A, et al. Nuclear Aurora-a kinase-induced hypoxia signaling drives early dissemination and metastasis in breast cancer: implications for detection of metastatic tumors. Oncogene. 2021;40(37):5651–5664. doi: 10.1038/s41388-021-01969-1.
  • Tatsuka M, Sato S, Kanda A, et al. Oncogenic role of nuclear accumulated Aurora-A. Mol Carcinog. 2009;48(9):810–820. doi: 10.1002/mc.20525.
  • Burum-Auensen E, De Angelis PM, Schjølberg AR, et al. Subcellular localization of the spindle proteins Aurora A, Mad2, and BUBR1 assessed by immunohistochemistry. J Histochem Cytochem. 2007;55(5):477–486. doi: 10.1369/jhc.6A7077.2007.
  • Tamotsu K, Okumura H, Uchikado Y, et al. Correlation of Aurora-a expression with the effect of chemoradiation therapy on esophageal squamous cell carcinoma. BMC Cancer. 2015;15(1):323. doi: 10.1186/s12885-015-1329-3.
  • Tanaka E, Hashimoto Y, Ito T, et al. The clinical significance of Aurora-a/STK15/BTAK expression in human esophageal squamous cell carcinoma. Clin Cancer Res. 2005;11(5):1827–1834. doi: 10.1158/1078-0432.Ccr-04-1627.
  • Wang R, Wang JH, Chu XY, et al. Expression of STK15 mRNA in hepatocellular carcinoma and its prognostic significance. Clin Biochem. 2009;42(7-8):641–647. doi: 10.1016/j.clinbiochem.2009.01.023.
  • Lassus H, Staff S, Leminen A, et al. Aurora-a overexpression and aneuploidy predict poor outcome in serous ovarian carcinoma. Gynecol Oncol. 2011;120(1):11–17. doi: 10.1016/j.ygyno.2010.09.003.
  • Lee JW, Parameswaran J, Sandoval-Schaefer T, et al. Combined Aurora kinase A (AURKA) and WEE1 inhibition demonstrates synergistic antitumor effect in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2019;25(11):3430–3442. doi: 10.1158/1078-0432.Ccr-18-0440.
  • Kao SY, Chen YP, Tu HF, et al. Nuclear STK15 expression is associated with aggressive behaviour of oral carcinoma cells in vivo and in vitro. J Pathol. 2010;222(1):99–109. doi: 10.1002/path.2737.
  • Nikonova AS, Astsaturov I, Serebriiskii IG, et al. Aurora a kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci. 2013;70(4):661–687. doi: 10.1007/s00018-012-1073-7.
  • Yang G, Mercado-Uribe I, Multani AS, et al. RAS promotes tumorigenesis through genomic instability induced by imbalanced expression of Aurora-a and BRCA2 in midbody during cytokinesis. Int J Cancer. 2013;133(2):275–285. doi: 10.1002/ijc.28032.
  • Gomes-Filho SM, Dos Santos EO, Bertoldi ERM, et al. Aurora a kinase and its activator TPX2 are potential therapeutic targets in KRAS-induced pancreatic cancer. Cell Oncol (Dordr). 2020;43(3):445–460. doi: 10.1007/s13402-020-00498-5.
  • Dos Santos EO, Carneiro-Lobo TC, Aoki MN, et al. Aurora kinase targeting in lung cancer reduces KRAS-induced transformation. Mol Cancer. 2016;15(1):12. doi: 10.1186/s12943-016-0494-6.
  • Asteriti IA, Polverino F, Stagni V, et al. AurkA nuclear localization is promoted by TPX2 and counteracted by protein degradation. Life Sci Alliance. 2023;6(5):e202201726. doi: 10.26508/lsa.202201726.
  • Bertolin G, Tramier M. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division. Cell Mol Life Sci. 2020;77(6):1031–1047. doi: 10.1007/s00018-019-03310-2.
  • den Hollander J, Rimpi S, Doherty JR, et al. Aurora kinases a and B are up-regulated by myc and are essential for maintenance of the malignant state. Blood. 2010;116(9):1498–1505. doi: 10.1182/blood-2009-11-251074.
  • Yang N, Wang C, Wang Z, et al. FOXM1 recruits nuclear Aurora kinase a to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells. Oncogene. 2017;36(24):3428–3440. doi: 10.1038/onc.2016.490.
  • Baba Y, Nosho K, Shima K, et al. Aurora-a expression is independently associated with chromosomal instability in colorectal cancer. Neoplasia. 2009;11(5):418–425. doi: 10.1593/neo.09154.
  • Briassouli P, Chan F, Savage K, et al. Aurora-a regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res. 2007;67(4):1689–1695. doi: 10.1158/0008-5472.Can-06-2272.
  • Katsha A, Arras J, Soutto M, et al. AURKA regulates JAK2-STAT3 activity in human gastric and esophageal cancers. Mol Oncol. 2014;8(8):1419–1428. doi: 10.1016/j.molonc.2014.05.012.
  • Zhang N, Wei P, Gong A, et al. FoxM1 promotes β-catenin nuclear localization and controls wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20(4):427–442. doi: 10.1016/j.ccr.2011.08.016.
  • Zeng L, Fagotto F, Zhang T, et al. The mouse fused locus encodes axin, an inhibitor of the wnt signaling pathway that regulates embryonic axis formation. Cell. 1997;90(1):181–192. doi: 10.1016/s0092-8674(00)80324-4.
  • Xia Z, Wei P, Zhang H, et al. AURKA governs self-renewal capacity in glioma-initiating cells via stabilization/activation of β-catenin/wnt signaling. Mol Cancer Res. 2013;11(9):1101–1111. doi: 10.1158/1541-7786.Mcr-13-0044.
  • Otto T, Horn S, Brockmann M, et al. Stabilization of N-myc is a critical function of Aurora a in human neuroblastoma. Cancer Cell. 2009;15(1):67–78. doi: 10.1016/j.ccr.2008.12.005.
  • Meraldi P, Honda R, Nigg EA. Aurora-a overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. Embo J. 2002;21(4):483–492. doi: 10.1093/emboj/21.4.483.
  • Zhou HZ, Li F, Cheng ST, et al. DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis. Hepatology. 2022;75(4):847–865. doi: 10.1002/hep.32195.
  • Hu X, Harvey SE, Zheng R, et al. The RNA-binding protein AKAP8 suppresses tumor metastasis by antagonizing EMT-associated alternative splicing. Nat Commun. 2020;11(1):486. doi: 10.1038/s41467-020-14304-1.
  • Huang G, Zhou Z, Wang H, et al. CAPER-α alternative splicing regulates the expression of vascular endothelial growth factor165 in ewing sarcoma cells. Cancer. 2012;118(8):2106–2116. doi: 10.1002/cncr.26488.
  • Tanaka I, Chakraborty A, Saulnier O, et al. ZRANB2 and SYF2-mediated splicing programs converging on ECT2 are involved in breast cancer cell resistance to doxorubicin. Nucleic Acids Res. 2020;48(5):2676–2693. doi: 10.1093/nar/gkz1213.
  • Li S, Qi Y, Yu J, et al. Aurora kinase a regulates cancer-associated RNA aberrant splicing in breast cancer. Heliyon. 2023;9(7):e17386. doi: 10.1016/j.heliyon.2023.e17386.
  • Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;135(8):851–867. doi: 10.1007/s00439-016-1683-5.
  • Howard JM, Sanford JR. The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip Rev RNA. 2015;6(1):93–110. doi: 10.1002/wrna.1260.
  • Li Z, Guo Q, Zhang J, et al. The RNA-Binding motif protein family in cancer: friend or foe? Front Oncol. 2021;11:757135. doi: 10.3389/fonc.2021.757135.
  • Wang Y, Chen D, Qian H, et al. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell. 2014;26(3):374–389. doi: 10.1016/j.ccr.2014.07.010.
  • Imyanitov EN, Togo AV, Hanson KP. Searching for cancer-associated gene polymorphisms: promises and obstacles. Cancer Lett. 2004;204(1):3–14. doi: 10.1016/j.canlet.2003.09.026.
  • Haga H, Yamada R, Ohnishi Y, et al. Gene-based SNP discovery as part of the japanese millennium genome project: identification of 190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet. 2002;47(11):605–610. doi: 10.1007/s100380200092.
  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–1351. doi: 10.1126/science.1058040.
  • Kimura MT, Mori T, Conroy J, et al. Two functional coding single nucleotide polymorphisms in STK15 (Aurora-A) coordinately increase esophageal cancer risk. Cancer Res. 2005;65(9):3548–3554. doi: 10.1158/0008-5472.Can-04-2149.
  • Robbrecht DGJ, Lopez J, Calvo E, et al. A first-in-human phase 1 and pharmacological study of TAS-119, a novel selective Aurora a kinase inhibitor in patients with advanced solid tumours. Br J Cancer. 2021;124(2):391–398. doi: 10.1038/s41416-020-01100-3.
  • Chu QS, Bouganim N, Fortier C, et al. Aurora kinase a inhibitor, LY3295668 erbumine: a phase 1 monotherapy safety study in patients with locally advanced or metastatic solid tumors. Invest New Drugs. 2021;39(4):1001–1010. doi: 10.1007/s10637-020-01049-3.
  • Diamond JR, Bastos BR, Hansen RJ, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of ENMD-2076, a novel angiogenic and Aurora kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2011;17(4):849–860. doi: 10.1158/1078-0432.Ccr-10-2144.
  • Yee KW, Chen HW, Hedley DW, et al. A phase I trial of the Aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia. Invest New Drugs. 2016;34(5):614–624. doi: 10.1007/s10637-016-0375-2.
  • Matulonis UA, Lee J, Lasonde B, et al. ENMD-2076, an oral inhibitor of angiogenic and proliferation kinases, has activity in recurrent, platinum resistant ovarian cancer. Eur J Cancer. 2013;49(1):121–131. doi: 10.1016/j.ejca.2012.07.020.
  • Diamond JR, Eckhardt SG, Pitts TM, et al. A phase II clinical trial of the Aurora and angiogenic kinase inhibitor ENMD-2076 for previously treated, advanced, or metastatic triple-negative breast cancer. Breast Cancer Res. 2018;20(1):82. doi: 10.1186/s13058-018-1014-y.
  • Lheureux S, Tinker A, Clarke B, et al. A clinical and molecular phase II trial of oral ENMD-2076 in ovarian clear cell carcinoma (OCCC): a study of the princess margaret phase II consortium. Clin Cancer Res. 2018;24(24):6168–6174. doi: 10.1158/1078-0432.Ccr-18-1244.
  • Veitch Z, Zer A, Loong H, et al. A phase II study of ENMD-2076 in advanced soft tissue sarcoma (STS). Sci Rep. 2019;9(1):7390. doi: 10.1038/s41598-019-43222-6.
  • Abou-Alfa GK, Mayer R, Venook AP, et al. Phase II multicenter, Open-Label study of oral ENMD-2076 for the treatment of patients with advanced fibrolamellar carcinoma. Oncologist. 2020;25(12):e1837–e1845. doi: 10.1634/theoncologist.2020-0093.
  • Amin M, Minton SE, LoRusso PM, et al. A phase I study of MK-5108, an oral Aurora a kinase inhibitor, administered both as monotherapy and in combination with docetaxel, in patients with advanced or refractory solid tumors. Invest New Drugs. 2016;34(1):84–95. doi: 10.1007/s10637-015-0306-7.
  • Dees EC, Infante JR, Cohen RB, et al. Phase 1 study of MLN8054, a selective inhibitor of Aurora a kinase in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2011;67(4):945–954. doi: 10.1007/s00280-010-1377-y.
  • Macarulla T, Cervantes A, Elez E, et al. Phase I study of the selective Aurora a kinase inhibitor MLN8054 in patients with advanced solid tumors: safety, pharmacokinetics, and pharmacodynamics. Mol Cancer Ther. 2010;9(10):2844–2852. doi: 10.1158/1535-7163.Mct-10-0299.
  • Beltran H, Oromendia C, Danila DC, et al. A phase II trial of the Aurora kinase a inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate cancer: efficacy and biomarkers. Clin Cancer Res. 2019;25(1):43–51. doi: 10.1158/1078-0432.Ccr-18-1912.
  • Falchook G, Kurzrock R, Gouw L, et al. Investigational Aurora a kinase inhibitor alisertib (MLN8237) as an enteric-coated tablet formulation in non-hematologic malignancies: phase 1 dose-escalation study. Invest New Drugs. 2014;32(6):1181–1187. doi: 10.1007/s10637-014-0121-6.
  • Falchook G, Coleman RL, Roszak A, et al. Alisertib in combination with weekly paclitaxel in patients with advanced breast cancer or recurrent ovarian cancer: a randomized clinical trial. JAMA Oncol. 2019;5(1):e183773. doi: 10.1001/jamaoncol.2018.3773.
  • Barr PM, Li H, Spier C, et al. Phase II intergroup trial of alisertib in relapsed and refractory peripheral T-cell lymphoma and transformed mycosis fungoides: SWOG 1108. J Clin Oncol. 2015;33(21):2399–2404. doi: 10.1200/jco.2014.60.6327.
  • Mossé YP, Fox E, Teachey DT, et al. A phase II study of alisertib in children with recurrent/refractory solid tumors or leukemia: children’s oncology group phase I and pilot consortium (ADVL0921). Clin Cancer Res. 2019;25(11):3229–3238. doi: 10.1158/1078-0432.Ccr-18-2675.
  • Mossé YP, Lipsitz E, Fox E, et al. Pediatric phase I trial and pharmacokinetic study of MLN8237, an investigational oral selective small-molecule inhibitor of Aurora kinase A: a children’s oncology group phase I consortium study. Clin Cancer Res. 2012;18(21):6058–6064. doi: 10.1158/1078-0432.Ccr-11-3251.
  • Zhou X, Mould DR, Yuan Y, et al. Population pharmacokinetics and Exposure-Safety relationships of alisertib in children and adolescents with advanced malignancies. J Clin Pharmacol. 2022;62(2):206–219. doi: 10.1002/jcph.1958.
  • Siddiqi T, Frankel P, Beumer JH, et al. Phase 1 study of the Aurora kinase a inhibitor alisertib (MLN8237) combined with the histone deacetylase inhibitor vorinostat in lymphoid malignancies. Leuk Lymphoma. 2020;61(2):309–317. doi: 10.1080/10428194.2019.1672052.
  • Venkatakrishnan K, Kim TM, Lin CC, et al. Phase 1 study of the investigational Aurora a kinase inhibitor alisertib (MLN8237) in east asian cancer patients: pharmacokinetics and recommended phase 2 dose. Invest New Drugs. 2015;33(4):942–953. doi: 10.1007/s10637-015-0258-y.
  • Brunner AM, Blonquist TM, DeAngelo DJ, et al. Alisertib plus induction chemotherapy in previously untreated patients with high-risk, acute myeloid leukaemia: a single-arm, phase 2 trial. Lancet Haematol. 2020;7(2):e122–e133. doi: 10.1016/s2352-3026(19)30203-0.
  • Fathi AT, Wander SA, Blonquist TM, et al. Phase I study of the Aurora a kinase inhibitor alisertib with induction chemotherapy in patients with acute myeloid leukemia. Haematologica. 2017;102(4):719–727. doi: 10.3324/haematol.2016.158394.
  • Semrad TJ, Kim EJ, Gong IY, et al. Phase 1 study of alisertib (MLN8237) and weekly irinotecan in adults with advanced solid tumors. Cancer Chemother Pharmacol. 2021;88(2):335–341. doi: 10.1007/s00280-021-04293-3.
  • Kelly KR, Shea TC, Goy A, et al. Phase I study of MLN8237–investigational Aurora a kinase inhibitor–in relapsed/refractory multiple myeloma, non-Hodgkin lymphoma and chronic lymphocytic leukemia. Invest New Drugs. 2014;32(3):489–499. doi: 10.1007/s10637-013-0050-9.
  • Necchi A, Lo Vullo S, Mariani L, et al. An open-label, single-arm, phase 2 study of the Aurora kinase a inhibitor alisertib in patients with advanced urothelial cancer. Invest New Drugs. 2016;34(2):236–242. doi: 10.1007/s10637-016-0328-9.
  • Necchi A, Pintarelli G, Raggi D, et al. Association of an Aurora kinase a (AURKA) gene polymorphism with progression-free survival in patients with advanced urothelial carcinoma treated with the selective Aurora kinase a inhibitor alisertib. Invest New Drugs. 2017;35(4):524–528. doi: 10.1007/s10637-017-0440-5.
  • Kelly KR, Friedberg JW, Park SI, et al. Phase I study of the investigational Aurora a kinase inhibitor alisertib plus rituximab or rituximab/vincristine in relapsed/refractory aggressive B-cell lymphoma. Clin Cancer Res. 2018;24(24):6150–6159. doi: 10.1158/1078-0432.Ccr-18-0286.
  • Shah HA, Fischer JH, Venepalli NK, et al. Phase I study of Aurora a kinase inhibitor alisertib (MLN8237) in combination with selective VEGFR inhibitor pazopanib for therapy of advanced solid tumors. Am J Clin Oncol. 2019;42(5):413–420. doi: 10.1097/coc.0000000000000543.
  • Dickson MA, Mahoney MR, Tap WD, et al. Phase II study of MLN8237 (alisertib) in advanced/metastatic sarcoma. Ann Oncol. 2016;27(10):1855–1860. doi: 10.1093/annonc/mdw281.
  • Panicker RC, Coyne AG, Srinivasan R. Allosteric targeting of Aurora a kinase using small molecules: a step forward towards next generation medicines? Curr Med Chem. 2019;26(13):2234–2242. doi: 10.2174/0929867324666170727120315.
  • Zhang J, Adrián FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature. 2010;463(7280):501–506. doi: 10.1038/nature08675.
  • Cox KJ, Shomin CD, Ghosh I. Tinkering outside the kinase ATP box: allosteric (type IV) and bivalent (type V) inhibitors of protein kinases. Future Med Chem. 2011;3(1):29–43. doi: 10.4155/fmc.10.272.
  • Burgess SG, Oleksy A, Cavazza T, et al. Allosteric inhibition of Aurora-a kinase by a synthetic vNAR domain. Open Biol. 2016;6(7):160089. doi: 10.1098/rsob.160089.
  • Almilaibary A. Targeting Aurora kinase a (AURKA) in cancer: molecular docking and dynamic simulations of potential AURKA inhibitors. Med Oncol. 2022;39(12):246. doi: 10.1007/s12032-022-01852-3.
  • Hijjawi MS, Abutayeh RF, Taha MO. Structure-Based discovery and bioactivity evaluation of novel Aurora-a kinase inhibitors as anticancer agents via Docking-Based comparative intermolecular contacts analysis (dbCICA). Molecules. 2020;25(24):6003. doi: 10.3390/molecules25246003.
  • Swamy PMG, Abbas N, Dhiwar PS, et al. Discovery of potential Aurora-a kinase inhibitors by 3D QSAR pharmacophore modeling, virtual screening, docking, and MD simulation studies. J Biomol Struct Dyn. 2023;41(1):125–146. doi: 10.1080/07391102.2021.2004236.
  • Fan Y, Luo F, Su M, et al. Structure optimization, synthesis, and biological evaluation of 6-(2-amino-1H-benzo[d]imidazole-6-yl)-quinazolin-4(3H)-one derivatives as potential multi-targeted anticancer agents via Aurora a/PI3K/BRD4 inhibition. Bioorg Chem. 2023;132:106352. doi: 10.1016/j.bioorg.2023.106352.
  • Yevale DB, Teraiya N, Lalwani TD, et al. A novel class of pyrazole analogues as Aurora kinase a inhibitor: design, synthesis, and anticancer evaluation. Bioorg Chem. 2023;141:106901. doi: 10.1016/j.bioorg.2023.106901.
  • Wang W, Wang X, Tang G, et al. Multitarget inhibitors/probes that target LRRK2 and Aurora a kinases noncovalently and covalently. Chem Commun (Camb). 2023;59(72):10789–10792. doi: 10.1039/d3cc03530a.
  • Nieto-Jiménez C, Morafraile EC, Alonso-Moreno C, et al. Clinical considerations for the design of PROTACs in cancer. Mol Cancer. 2022;21(1):67. doi: 10.1186/s12943-022-01535-7.
  • Wang R, Ascanelli C, Abdelbaki A, et al. Selective targeting of non-centrosomal AURKA functions through use of a targeted protein degradation tool. Commun Biol. 2021;4(1):640. doi: 10.1038/s42003-021-02158-2.
  • Rishfi M, Krols S, Martens F, et al. Targeted AURKA degradation: towards new therapeutic agents for neuroblastoma. Eur J Med Chem. 2023;247:115033. doi: 10.1016/j.ejmech.2022.115033.
  • Liu F, Wang X, Duan J, et al. A temporal PROTAC Cocktail-Mediated sequential degradation of AURKA abrogates acute myeloid leukemia stem cells. Adv Sci (Weinh). 2022;9(22):e2104823. doi: 10.1002/advs.202104823.
  • Adhikari B, Bozilovic J, Diebold M, et al. PROTAC-mediated degradation reveals a non-catalytic function of Aurora-a kinase. Nat Chem Biol. 2020;16(11):1179–1188. doi: 10.1038/s41589-020-00652-y.
  • Janeček M, Rossmann M, Sharma P, et al. Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci Rep. 2016;6(1):28528. doi: 10.1038/srep28528.
  • Karthigeyan D, Siddhanta S, Kishore AH, et al. SERS and MD simulation studies of a kinase inhibitor demonstrate the emergence of a potential drug discovery tool. Proc Natl Acad Sci U S A. 2014;111(29):10416–10421. doi: 10.1073/pnas.1402695111.
  • Kesisova IA, Nakos KC, Tsolou A, et al. Tripolin A, a novel small-molecule inhibitor of Aurora a kinase, reveals new regulation of HURP's distribution on microtubules. PLoS One. 2013;8(3):e58485. doi: 10.1371/journal.pone.0058485.
  • Lewis JOE. inventor; EUROPEAN MOLECULAR BIOLOGY LABORATORY (EMBL), assignee. AURORA KINASE INHIBITORS. WO2007115805. 2007 Apr 05.
  • Conti E, Bayliss R, Schultz C, et al. inventor; EMBL, assignee. Crystals of an Aurora-a tpx2 complex, tpx2 binding site of Aurora-A, Aurora-a ligands and their use. WO2005040368. 2004 Nov 11.
  • Sumi K, Tago K, Kasahara T, et al. Aurora kinase a critically contributes to the resistance to anti-cancer drug cisplatin in JAK2 V617F mutant-induced transformed cells. FEBS Lett. 2011;585(12):1884–1890. doi: 10.1016/j.febslet.2011.04.068.
  • Shah KN, Bhatt R, Rotow J, et al. Aurora kinase a drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat Med. 2019;25(1):111–118. doi: 10.1038/s41591-018-0264-7.
  • Liu N, Wang YA, Sun Y, et al. Inhibition of Aurora a enhances radiosensitivity in selected lung cancer cell lines. Respir Res. 2019;20(1):230. doi: 10.1186/s12931-019-1194-8.
  • Liu JB, Hu L, Yang Z, et al. Aurora-a/NF-ĸB signaling is associated with radio-resistance in human lung adenocarcinoma. Anticancer Res. 2019;39(11):5991–5998. doi: 10.21873/anticanres.13804.
  • Ma Y, Yang J, Wang R, et al. Aurora-a affects radiosenstivity in cervical squamous cell carcinoma and predicts poor prognosis. Oncotarget. 2017;8(19):31509–31520. doi: 10.18632/oncotarget.15663.
  • Damodaran AP, Vaufrey L, Gavard O, et al. Aurora a kinase is a priority pharmaceutical target for the treatment of cancers. Trends Pharmacol Sci. 2017;38(8):687–700. doi: 10.1016/j.tips.2017.05.003.
  • Gustafson WC, Meyerowitz JG, Nekritz EA, et al. Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell. 2014;26(3):414–427. doi: 10.1016/j.ccr.2014.07.015.