1,221
Views
0
CrossRef citations to date
0
Altmetric
Oncology

Comprehensive analysis of the efficacy and safety of CAR T-cell therapy in patients with relapsed or refractory B-cell acute lymphoblastic leukaemia: a systematic review and meta-analysis

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Article: 2349796 | Received 01 Apr 2024, Accepted 05 Apr 2024, Published online: 13 May 2024

References

  • Tuong PN, Kiem Hao T, Kim Hoa NT. Relapsed childhood acute lymphoblastic leukemia: a single-institution experience. Cureus. 2020; 12(7):1. doi: 10.7759/cureus.9238.
  • Dinner S, Liedtke M. Antibody-based therapies in patients with acute lymphoblastic leukemia. Hematol (United States). 2018;2018(1):9–16.
  • Roberts KG. Genetics and prognosis of ALL in children vs adults. Hematol (United States). 2018;2018(1):137–145.
  • Anita K, Premlatha MM, Kanagavel M, et al. Evaluation of combined B cell specific N-terminal immunogenic domains of LipL21 for diagnosis of leptospirosis. Int J Biol Macromol. 2016;91:465–470. https://pubmed.ncbi.nlm.nih.gov/27259643/ doi: 10.1016/j.ijbiomac.2016.05.109.
  • Mengxuan S, Fen Z, Runming J. Novel treatments for pediatric relapsed or refractory acute B-cell lineage lymphoblastic leukemia: precision medicine era. Front Pediatr. 2022;10:923419. doi: 10.3389/fped.2022.923419.
  • Garniasih D, Susanah S, Sribudiani Y, et al. The incidence and mortality of childhood acute lymphoblastic leukemia in Indonesia: a systematic review and meta-analysis. PLoS One. 2022;17(6):e0269706. doi: 10.1371/journal.pone.0269706.
  • Weinkove R, George P, Dasyam N, et al. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunol. 2019;8(5):e1049.
  • Leick MB, Maus MV, Frigault MJ. Clinical perspective: treatment of aggressive B cell lymphomas with FDA-approved CAR-T cell therapies. Mol Ther. 2021;29(2):433–441. doi: 10.1016/j.ymthe.2020.10.022.
  • Shah BD, Ghobadi A, Oluwole OO, et al. Two-year follow-up of KTE-X19 in patients with relapsed or refractory adult B-cell acute lymphoblastic leukemia in ZUMA-3 and its contextualization with SCHOLAR-3, an external historical control study. J Hematol Oncol. 2022;15(1):170. doi: 10.1186/s13045-022-01379-0.
  • Wittibschlager V, Bacher U, Seipel K, et al. CAR T-cell persistence correlates with improved outcome in patients with B-cell lymphoma. Int J Mol Sci. 2023;24(6):5688.
  • Rethlefsen ML, Page MJ. PRISMA 2020 and PRISMA-S: common questions on tracking records and the flow diagram. J Med Libr Assoc. 2022;110(2):253–257.
  • Alnefaie A, Albogami S, Asiri Y, et al. Chimeric antigen receptor T-cells: an overview of concepts, applications, limitations, and proposed solutions. Front Bioeng Biotechnol. 2022;10:797440. doi: 10.3389/fbioe.2022.797440.
  • Wells G, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. 2012. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
  • Brüggemann P, Rajguru K. Comprehensive meta-analysis (CMA) 3.0: a software review. J Mark Anal. 2022;10(4):425–429.
  • Cochrane Collab. Review Manager (RevMan) [computer program]. version 5.4. Copenhagen: The Nordic Cochrane Centre; 2020.
  • StataCorp. Stata statistical software: release 17. College Station: TX StataCorp LLC; 2021.
  • Summers C, Wu QV, Annesley C, et al. Hematopoietic cell transplantation after CD19 chimeric antigen receptor T cell-induced acute lymphoblastic lymphoma remission confers a leukemia-free survival advantage. Transplant Cell Ther. 2022;28(1):21–29. doi: 10.1016/j.jtct.2021.10.003.
  • Hu Y, Zhang X, Zhang A, et al. Global burden and attributable risk factors of acute lymphoblastic leukemia in 204 countries and territories in 1990–2019: estimation based on global burden of disease study 2019. Hematol Oncol. 2022;40(1):92–104.
  • Ghorashian S, Kramer AM, Onuoha S, et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med. 2019;25(9):1408–1414. doi: 10.1038/s41591-019-0549-5.
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–528.
  • Ma F, Ho J-Y, Du H, et al. Evidence of long-lasting anti-CD19 activity of engrafted CD19 chimeric antigen receptor-modified T cells in a phase I study targeting pediatrics with acute lymphoblastic leukemia. Hematol Oncol. 2019;37(5):601–608. doi: 10.1002/hon.2672.
  • Wayne AS, Huynh V, Hijiya N, et al. Three-year results from phase I of ZUMA-4: KTE-X19 in pediatric relapsed/refractory acute lymphoblastic leukemia. Haematologica. 2023;108(3):747–760. doi: 10.3324/haematol.2022.280678.
  • Barz Leahy A, Stanley KJ, Myers RM, et al. Cytogenetic characteristics and outcomes of patients receiving CTL019 CAR T cell therapy. Blood. 2019;134(Supplement_1):1464–1464. doi: 10.1182/blood-2019-130060.
  • Lee DW, Wayne AS, Huynh V, et al. ZUMA-4 preliminary results: phase 1 study of KTE-C19 chimeric antigen receptor T cell therapy in pediatric and adolescent patients (pts) with relapsed/refractory acute lymphoblastic leukemia (R/R ALL). Ann Oncol. 2017;28:V360–V361.
  • Talleur A, Qudeimat A, Lockey T, et al. Autologous CD19-CAR T-cells for the treatment of acute lymphoblastic leukemia in pediatric and young adult patients: an initial report from an institutional phase I/II study. Clin Lymphoma Myeloma Leuk. 2019;19:S265.
  • Hiramatsu H, Adachi S, Umeda K, et al. Efficacy and safety of tisagenlecleucel in Japanese pediatric and young adult patients with relapsed/refractory B cell acute lymphoblastic leukemia. Int J Hematol. 2020;111(2):303–310. doi: 10.1007/s12185-019-02771-2.
  • Lee DWIII, Stetler-Stevenson M, Yuan CM, et al. Long-term outcomes following CD19 CAR T cell therapy for B-ALL are superior in patients receiving a fludarabine/cyclophosphamide preparative regimen and post-CAR hematopoietic stem cell transplantation. Blood. 2016;128(22):218. doi: 10.1182/blood.V128.22.218.218.
  • Zhang X, Lu XA, Yang J, et al. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–2338.
  • Zhao Y-L, Liu D-Y, Sun R-J, et al. Integrating CAR T-cell therapy and transplantation: comparisons of safety and long-term efficacy of allogeneic hematopoietic stem cell transplantation after CAR T-cell or chemotherapy-based complete remission in B-cell acute lymphoblastic leukemia. Front Immunol. 2021;12:605766. doi: 10.3389/fimmu.2021.605766.
  • Ceppi F, Annesley C, Finney O, et al. Minimal change in CAR T cell manufacturing can impact in expansion and side effect of the CAR T cell therapy. Blood. 2018;132(Supplement 1):4012–4012. doi: 10.1182/blood-2018-99-110164.
  • Del Bufalo F, Quintarelli C, De Angelis B, et al. Academic, phase I/II trial on T cells expressing a second generation, CD19-specific chimeric antigen receptor (CAR) and inducible caspase 9 safety switch for the treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) and B-cell non-Hodgkin lymphoma (B-NHL) in children. Blood. 2019;134(Supplement_1):1341. doi: 10.1182/blood-2019-129821.
  • Dourthe M-E, Rabian F, Yakouben K, et al. Safety and efficacy of tisagenlecleucel (CTL019) in B-cell acute lymphoblastic leukemia in children, adolescents and young adults: the French experience. Blood. 2019;134(Supplement_1):3876. doi: 10.1182/blood-2019-131123.
  • Shen D, Song H, Xu X, et al. Chimeric antigen receptor T cell therapy can be administered safely under the real-time monitoring of Th1/Th2 cytokine pattern using the cytometric bead array technology for relapsed and refractory acute lymphoblastic leukemia in children. Pediatr Hematol Oncol. 2020;37(4):288–299. doi: 10.1080/08880018.2019.1704325.
  • Dai H, Wu Z, Jia H, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol. 2020;13(1):53. doi: 10.1186/s13045-020-00856-8.
  • Cordoba S, Onuoha S, Thomas S, et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 2021;27(10):1797–1805. doi: 10.1038/s41591-021-01497-1.
  • Pasquini MC, Hu Z-H, Curran K, et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020;4(21):5414–5424. doi: 10.1182/bloodadvances.2020003092.
  • Pan J, Niu Q, Deng B, et al. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia. Leukemia. 2019;33(12):2854–2866. doi: 10.1038/s41375-019-0488-7.
  • Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–28. doi: 10.1038/nm.4441.
  • Curran KJ, Margossian SP, Kernan NA, et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood. 2019;134(26):2361–2368. doi: 10.1182/blood.2019001641.
  • Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi: 10.1056/NEJMoa1709866.
  • Levine JE, Grupp SA, Pulsipher MA, et al. Pooled safety analysis of tisagenlecleucel in children and young adults with B cell acute lymphoblastic leukemia. J Immunother Cancer. 2021;9(8):e002287. doi: 10.1136/jitc-2020-002287.
  • Shah NN, Lee DW, Yates B, et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J Clin Oncol. 2021;39(15):1650–1659.
  • Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–3331. doi: 10.1182/blood-2017-02-769208.
  • Hu Y, Tian Y, Di H, et al. Noninvasive diagnosis of nasopharyngeal carcinoma based on phenotypic profiling of viral and tumor markers on plasma extracelular vesicles. Anal Chem. 2022;94(27):9740–9749. doi: 10.1021/acs.analchem.2c01311.
  • Lee HW, Lee JK, Kim E, et al. The effectiveness and safety of fluoroquinolone-containing regimen as a first-line treatment for drug-sensitive pulmonary tuberculosis: a systematic review and meta-analysis. PLoS One. 2016;11(7):e0159827. doi: 10.1371/journal.pone.0159827.
  • Cao X-Y, Zhang J-P, Zhao Y-L, et al. Analysis benefits of a second allo-HSCT after CAR-T cell therapy in patients with relapsed/refractory B-cell acute lymphoblastic leukemia who relapsed after transplant. Front Immunol. 2023;14:1191382. doi: 10.3389/fimmu.2023.1191382.
  • Ren A, Tong X, Xu N, et al. CAR T-cell immunotherapy treating T-ALL: challenges and opportunities. Vaccines (Basel). 2023;11(1):165. doi: 10.3390/vaccines11010165.
  • Aamir S, Anwar MY, Khalid F, et al. Systematic review and meta-analysis of CD19-specific CAR-T cell therapy in relapsed/refractory acute lymphoblastic leukemia in the pediatric and young adult population: safety and efficacy outcomes. Clin Lymphoma Myeloma Leuk. 2021;21(4):e334–e347. doi: 10.1016/j.clml.2020.12.010.
  • Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat Rev Clin Oncol. 2021;18(11):715–727. doi: 10.1038/s41571-021-00530-z.
  • Myers RM, Taraseviciute A, Steinberg SM, et al. Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. J Clin Oncol. 2022;40(9):932–944. doi: 10.1200/JCO.21.01405.
  • Zhong XS, Matsushita M, Plotkin J, et al. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther. 2010;18(2):413–420. doi: 10.1038/mt.2009.210.
  • Fergusson NJ, Adeel K, Kekre N, et al. A systematic review and meta-analysis of CD22 CAR T-cells alone or in combination with CD19 CAR T-cells. Front Immunol. 2023;14:1178403. doi: 10.3389/fimmu.2023.1178403.
  • Wang Y, Yang Y, Hong R, et al. A retrospective comparison of CD19 single and CD19/CD22 bispecific targeted chimeric antigen receptor T cell therapy in patients with relapsed/refractory acute lymphoblastic leukemia. Blood Cancer J. 2020;10(10):105. doi: 10.1038/s41408-020-00371-6.
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–1517. doi: 10.1056/NEJMoa1407222.
  • Shalabi H, Qin H, Su A, et al. CD19/22 CAR T cells in children and young adults with B-ALL: phase 1 results and development of a novel bicistronic CAR. Blood. 2022;140(5):451–463. doi: 10.1182/blood.2022015795.
  • Kouro T, Himuro H, Sasada T. Exhaustion of CAR T cells: potential causes and solutions. J Transl Med. 2022;20(1):239. doi: 10.1186/s12967-022-03442-3.
  • Meng X, Jing R, Qian L, et al. Engineering cytoplasmic signaling of CD28ζ CARs for improved therapeutic functions. Front Immunol. 2020;11:1046. doi: 10.3389/fimmu.2020.01046.
  • Li G, Boucher JC, Kotani H, et al. 4-1BB enhancement of CAR T function requires NF-κB and TRAFs. JCI Insight. 2018;3(18):e121322. doi: 10.1172/jci.insight.121322.
  • Salter AI, Ivey RG, Kennedy JJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal. 2018;11(544):eaat6753. doi: 10.1126/scisignal.aat6753.
  • Wang N, Hu X, Cao W, et al. Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood. 2020;135(1):17–27. doi: 10.1182/blood.2019000017.
  • Ghodke K, Bibi A, Rabade N, et al. CD19 negative precursor B acute lymphoblastic leukemia (B-ALL)—immunophenotypic challenges in diagnosis and monitoring: a study of three cases. Cytom Part B – Clin Cytom. 2017;92(4):315–318.
  • Epperla N, Li A, Logan B, et al. Incidence, risk factors for and outcomes of transplant-associated thrombotic microangiopathy. Br J Haematol. 2020;189(6):1171–1181. doi: 10.1111/bjh.16457.
  • Jin L, Tao H, Karachi A, et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun. 2019;10(1):4016. doi: 10.1038/s41467-019-11869-4.
  • Qi J, Han Y. A narrative review of transplant-associated thrombotic microangiopathy: pathogenesis and novel therapies. Ann Blood. 2023;8:25. doi: 10.21037/aob-22-22.
  • Bader P, Rossig C, Hutter M, et al. CD19 CAR T cells are an effective therapy for posttransplant relapse in patients with B-lineage ALL: real-world data from Germany. Blood Adv. 2023;7(11):2436–2448.
  • Shi J, Zhang Z, Cen H, et al. CAR T cells targeting CD99 as an approach to eradicate T-cell acute lymphoblastic leukemia without normal blood cells toxicity. J Hematol Oncol. 2021;14(1):162. doi: 10.1186/s13045-021-01178-z.
  • Novel CD99 scFv targeting CAR-T cells for acute myeloid leukemia immun | Moffitt [Internet]. [cited 2023 Nov 24]. Available from: https://www.moffitt.org/research-science/academic-and-industry-partnerships/office-of-innovation/available-technologies/immunotherapies/17mb042-cd99-novel-cd99-scfv-targeting-car-t-cells-for-acute-myeloid-leukemia-immunotherapy/.
  • Huang R, Zhao B, Hu S, et al. Adoptive neoantigen-reactive T cell therapy: improvement strategies and current clinical researches. Biomark Res. 2023;11(1):41. doi: 10.1186/s40364-023-00478-5.
  • Want MY, Bashir Z, Najar RA. T cell based immunotherapy for cancer: approaches and strategies. Vaccines (Basel). 2023;11(4):835. doi: 10.3390/vaccines11040835.